Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Immune Network ; : e43-2023.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-1040781

RESUMEN

The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants has provided insights for updating current coronavirus disease 2019 (COVID-19) vaccines. We examined the neutralizing activity of Abs induced by a BA.4/5-containing bivalent mRNA vaccine against Omicron subvariants BN.1 and XBB.1.5. We recruited 40 individuals who had received a monovalent COVID-19 booster dose after a primary series of COVID-19 vaccinations and will be vaccinated with a BA.4/5-containing bivalent vaccine. Sera were collected before vaccination, one month after, and three months after a bivalent booster.Neutralizing Ab (nAb) titers were measured against ancestral SARS-CoV-2 and Omicron subvariants BA.5, BN.1, and XBB.1.5. BA.4/5-containing bivalent vaccination significantly boosted nAb levels against both ancestral SARS-CoV-2 and Omicron subvariants. Participants with a history of SARS-CoV-2 infection had higher nAb titers against all examined strains than the infection-naïve group. NAb titers against BN.1 and XBB.1.5 were lower than those against the ancestral SARS-CoV-2 and BA.5 strains. These results suggest that COVID-19 vaccinations specifically targeting emerging Omicron subvariants, such as XBB.1.5, may be required to ensure better protection against SARS-CoV-2 infection, especially in high-risk groups.

2.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-925957

RESUMEN

Background@#The potential for a nosocomial outbreak of coronavirus disease 2019 (COVID-19) from a fully vaccinated individual is largely unknown. @*Methods@#In October 2021, during the time when the delta variant was dominant, a nosocomial outbreak of COVID-19 occurred in two wards in a tertiary care hospital in Seoul, Korea. We performed airflow investigations and whole-genome sequencing (WGS) of the virus. @*Results@#The index patient developed symptoms 1 day after admission, and was diagnosed with COVID-19 on day 4 post-admission. He was fully vaccinated (ChAdOx1 nCoV-19) 2 months before the diagnosis. Three inpatients and a caregiver in the same room, two inpatients in an adjacent room, two inpatients in rooms remote from the index room, and one nurse on the ward tested positive. Also, two resident doctors who stayed in an on-call room located on the same ward tested positive (although they had no close contact), as well as a caregiver who stayed on an adjacent ward, and a healthcare worker who had casual contact with this caregiver. Samples from five individuals were available for WGS, and all showed ≤ 1 single-nucleotide polymorphism difference. CCTV footage showed that the index case walked frequently in the corridors of two wards. An airflow study showed that the air from the corridor flowed into the resident on-call room, driven by an air circulator that was always turned on. @*Conclusion@#Transmission of severe acute respiratory syndrome coronavirus 2 from a fully vaccinated index occurred rapidly via the wards and on-call room. Care must be taken to not use equipment that can change the airflow.

3.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-897312

RESUMEN

Novel coronavirus (SARS-CoV-2) has caused more than 100 million confirmed cases of human infectious disease (COVID-19) since December 2019 to paralyze our global community. However, only limited access has been allowed to COVID-19 vaccines and antiviral treatment options. Here, we report the efficacy of the anticancer drug pralatrexate against SARS-CoV-2. In Vero and human lung epithelial Calu-3 cells, pralatrexate reduced viral RNA copies of SARS-CoV-2 without detectable cytotoxicity, and viral replication was successfully inhibited in a dose-dependent manner. In a time-to-addition assay, pralatrexate treatment at almost half a day after infection also exhibited inhibitory effects on the replication of SARS-CoV-2 in Calu-3 cells. Taken together, these results suggest the potential of pralatrexate as a drug repurposing COVID-19 remedy.

4.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-889608

RESUMEN

Novel coronavirus (SARS-CoV-2) has caused more than 100 million confirmed cases of human infectious disease (COVID-19) since December 2019 to paralyze our global community. However, only limited access has been allowed to COVID-19 vaccines and antiviral treatment options. Here, we report the efficacy of the anticancer drug pralatrexate against SARS-CoV-2. In Vero and human lung epithelial Calu-3 cells, pralatrexate reduced viral RNA copies of SARS-CoV-2 without detectable cytotoxicity, and viral replication was successfully inhibited in a dose-dependent manner. In a time-to-addition assay, pralatrexate treatment at almost half a day after infection also exhibited inhibitory effects on the replication of SARS-CoV-2 in Calu-3 cells. Taken together, these results suggest the potential of pralatrexate as a drug repurposing COVID-19 remedy.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-225102

RESUMEN

Since the first human case was reported in Wuhan Province, China in December 2019, SARS-CoV-2 has caused millions of human infections in more than 200 countries worldwide with an approximately 4.01% case-fatality rate (as of 27 July, 2020; based on a WHO situation report), and COVID-19 pandemic has paralyzed our global community. Even though a few candidate drugs, such as remdesivir (a broad antiviral prodrug) and hydroxychloroquine, have been investigated in human clinical trials, their therapeutic efficacy needs to be clarified further to be used to treat COVID-19 patients. Here we show that pyronaridine and artesunate, which are the chemical components of anti-malarial drug Pyramax(R), exhibit antiviral activity against SARS-CoV-2 and influenza viruses. In human lung epithelial (Calu-3) cells, pyronaridine and artesunate were highly effective against SARS-CoV-2 while hydroxychloroquine did not show any effect at concentrations of less than 100 M. In viral growth kinetics, both pyronaridine and artesunate inhibited the growth of SARS-CoV-2 and seasonal influenza A virus in Calu-3 cells. Taken together, we suggest that artesunate and pyronaridine might be effective drug candidates for use in human patients with COVID-19 and/or influenza, which may co-circulate during this coming winter season.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA