Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 272: 111067, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32736232

RESUMEN

Subsurface denitrification plays a key role in the reduction or 'attenuation' of nitrate contamination of groundwater and surface waters. We investigated subsurface denitrification characteristics in the vadose zone and shallow groundwater at four sites under pastoral farming in the Manawatu River catchment, located in the lower part of North Island, New Zealand. The denitrification potential of the vadose zone was determined by the laboratory incubation assays measuring the denitrifying enzyme activity (DEA) in soil samples collected from different soil horizons (up to 2.1 m below ground surface), whereas denitrification rates in shallow groundwaters were measured in situ by single-well, push-pull tests conducted in piezometers installed at multiple depths at the study sites. Soils and underlying geology, defining hydrogeologic settings, appear to influence the spatial variability of subsurface denitrification characteristics at the study sites. Where the vadose zone is thin and composed of coarse-textured soils, percolation of nitrate was evident in observed high nitrate-nitrogen concentrations (>5 mg L-1) in oxic and young shallow groundwaters, but low nitrate-nitrogen concentrations (<0.05 mg L-1) were observed in the reduced shallow groundwater found underneath the fine textured soils and/or a thick vadose zone. This was confirmed by the push-pull tests measuring denitrification rates from 0.08 to 1.07 mg N L-1 h-1 in the reduced shallow groundwaters (dissolved oxygen or DO < 0.5 mg L-1), while negligible in the oxic groundwaters (DO > 5 mg L-1) found at the study sites. These contrasting subsurface denitrification characteristics determine the ultimate delivery of nitrate losses from agricultural soils to receiving waters, where the fine textured thick vadose zone and reducing groundwater conditions offer nitrate reduction in the subsurface environment.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua/análisis , Agricultura , Desnitrificación , Monitoreo del Ambiente , Nueva Zelanda , Nitratos/análisis , Nutrientes
2.
J Environ Manage ; 197: 476-489, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28412619

RESUMEN

A sound understanding of the effects of hydrogeological factors on loss, transport and transformation of farm nutrients is essential for predicting their impacts on ecosystem health of receiving waters. We assessed the potential of groundwater to attenuate nitrate through denitrification, and the distribution of this potential across the Tararua Groundwater Management Zone (GWMZ) in the Manawatu River catchment, New Zealand. We combined a number of methods in an unprecedented manner to confirm findings and obtain supporting evidence for the features that determine the subsurface denitrification characteristics. Our results showed that the denitrification characteristics of groundwater varied considerably in the Tararua GWMZ. The southern part of the Tararua GWMZ contained mainly oxic groundwater with low potential to denitrify, whereas the middle and northern parts of the Tararua GWMZ contained reduced groundwater with high denitrification potential. The hydrogeological features that influence denitrification potential in groundwater were identified as soil texture and drainage class, and the aquifer material or rock type. Low dissolved oxygen levels and nitrate concentrations were found in groundwater where the combinations of soil and rock types had poor drainage characteristics as opposed to higher concentrations in groundwater under well-drained soils and rocks (e.g. gravels). Intensive pastoral farming over well-drained soils and rocks showed high nitrate concentration in groundwater. This spatial variability in denitrification potential of groundwater offers a targeted management of nutrients runoff and leaching from pastoral lands to reduce their impacts on receiving surface waters.


Asunto(s)
Desnitrificación , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Agua Subterránea , Nueva Zelanda , Nitratos , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA