Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; : 108199, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278383

RESUMEN

Southeast Asia is a biodiversity hotspot characterized by a complex paleogeography, and its Polypodiopsida flora is particularly diverse. While hybridization is recognized as common in ferns, further research is needed to investigate the relationship between hybridization events and fern diversity. Lecanopteris s.s., an ant-associated fern, has been subject to debate regarding species delimitations primarily due to limited DNA markers and species sampling. Our study integrates 22 newly generated plastomes, 22 transcriptomes, and flow cytometry of all native species along with two cultivated hybrids. Our objective is to elucidate the reticulate evolutionary history within Lecanopteris s.s. through the integration of phylobiogeographic reconstruction, gene flow inference, and genome size estimation. Key findings of our study include: (1) An enlarged plastome size (178-187 Kb) in Lecanopteris, attributed to extreme expansion of the Inverted Repeat (IR) regions; (2) The traditional 'pumila' and 'crustacea' groups are paraphyletic; (3) Significant cytonuclear discordance attributed to gene flow; (4) Natural hybridization and introgression in the 'pumila' and 'darnaedii' groups; (5) L. luzonensis is the maternal parent of L. 'Yellow Tip', with L. pumila suggested as a possible paternal parent; (6) L. 'Tatsuta' is a hybrid between L. luzonensis and L. crustacea; (7) Lecanopteris first diverged during the Neogene and then during the middle Miocene climatic optimum in the Indochina and Sundaic regions. In conclusion, the biogeographic history and speciation of Lecanopteris have been profoundly shaped by past climate changes and geodynamics of Southeast Asia. Dispersals, hybridization and introgression between species act as pivotal factors in the evolutionary trajectory of Lecanopteris. This research provides a robust framework for further exploration and understanding of the complex dynamics driving the diversification and distribution patterns within Polypodiaceae subfamily Microsoroideae.

2.
Front Plant Sci ; 15: 1405253, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081519

RESUMEN

The unresolved phylogenetic framework within the Selaginellaceae subfamily Gymnogynoideae (ca. 130 species) has hindered our comprehension of the diversification and evolution of Selaginellaceae, one of the most important lineages in land plant evolution. Here, based on plastid and nuclear data extracted from genomic sequencing of more than 90% species of all genera except two in Gymnogynoideae, a phylogenomic study focusing on the contentious relationships among the genera in Gymnogynoideae was conducted. Our major results included the following: (1) Only single-copy region (named NR) and only one ribosomal operon was firstly found in Afroselaginella among vascular plants, the plastome structure of Gymnogynoideae is diverse among the six genera, and the direct repeats (DR) type is inferred as the ancestral state in the subfamily; (2) The first strong evidence was found to support Afroselaginella as a sister to Megaloselaginella. Alternative placements of Ericetorum and Gymnogynum were detected, and their relationships were investigated by analyzing the variation of phylogenetic signals; and (3) The most likely genus-level relationships in Gymnogynoideae might be: ((Bryodesma, Lepidoselaginella), (((Megaloselaginella, Afroselaginella), Ericetorum), Gymnogynum)), which was supported by maximum likelihood phylogeny based on plastid datasets, maximum likelihood, and Bayesian inference based on SCG dataset and concatenated nuclear and plastid datasets and the highest proportion of phylogenetic signals of plastid genes.

3.
PhytoKeys ; 227: 135-149, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325449

RESUMEN

A new species of spikemoss, Selaginelladensiciliata in S.subg.Heterostachyssect.Tetragonostachyae, China, is described from southeastern Xizang, based on morphological and molecular phylogenetic data. Morphologically, S.densiciliata is similar to S.repanda, S.subvaginata and S.vaginata, but the new species can be easily distinguished from them by having sterile leaves margins densely ciliate, symmetrical axillary leaves oblong ovate to ovate-triangular, and ovate dorsal leaves obviously carinate. Molecular phylogenetic analysis resolves S.densiciliata as sister to the clade comprised with S.vaginata and S.xipholepis, which confirms the recognition of the new species.

4.
Mol Phylogenet Evol ; 169: 107410, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35031459

RESUMEN

As one of the earliest land plant lineages, Selaginella is important for studying land plant evolution. It is the largest genus of lycophytes containing 700-800 species. Some unique characters of Selaginella plastomes have been reported, but based only on 20 species. There have been no plastome phylogenies of Selaginella based on a relatively large sampling, and no efforts have been made to resolve the phylogeny of the enigmatic Sinensis group whose relationships have been unclear based on small datasets. Here we investigated the structures of 59 plastomes representing 51 species covering all six subgenera and 18 sections of Selaginella except two sections and including the intriguing Sinensis group for the first time. Our major results include: (1) the plastome size of Selaginella ranges tremendously from 78,492 bp to 187,632 bp; (2) there are numerous gene losses in Selaginella comparing with other lycophytes, Isoëtaceae and Lycopodiaceae; (3) the gene contents and plastome structures in Selaginella vary lineage-specifically and all infrageneric taxa are well supported in the plastome phylogeny; (4) the ndh gene family tends to lose or pseudogenize in those species with DR structure and without other short or medium repeats; (5) the short and medium repeat regions in SC mediate many conformations causing diverse and complex plastome structures, and six new conformations are discovered; (6) forty-eight species sampled have high GC content (>50%) but three species in the Sinensis group have âˆ¼ 30% GC content in plastomes, similar to most vascular plants; (7) the Sinensis group is monophyletic, includes at least two subgroups, and has the smallest plastomes in land plants except some parasitic plants, and their plastomes do not contain any tRNAs; (8) the younger lineages in Selaginella tend to have higher GC content, whereas the older lineages tend to have lower GC content; and (9) because of incomplete genomic data and abnormal structures or some unknown reasons, even the concatenated plastomes could not well resolve the phylogenetic relationships in Selaginella with confidence, highlighting the difficulty in resolving the phylogeny and evolution of this particularly important land plant lineage.


Asunto(s)
Genoma de Plastidios , Selaginellaceae , Composición de Base , Evolución Molecular , Filogenia , Selaginellaceae/genética
5.
Mitochondrial DNA B Resour ; 6(8): 2339-2341, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34377795

RESUMEN

The complete chloroplast genome of Aristolochia delavayi was determined in this study. The chloroplast genome consists of 160,344 bp, with a typical circular structure including a pair of inverted repeats of 25,454 bp separated by a large single-copy region and a small single-copy region of 89,502 and 19,795 bp, respectively. The plastome contains 130 genes, including 85 protein-coding genes, eight rRNA genes, and 37 tRNA genes. Further phylogenetic analyses were conducted using 12 complete plastomes of Aristolochia. These data support a close relationship between Aristolochia delavayi and Aristolochia tubiflora.

6.
Huan Jing Ke Xue ; 42(2): 960-966, 2021 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-33742892

RESUMEN

A pot-based experiment was conducted to study the Cd tolerance and accumulation characteristics of four invasive herbs (Galinsoga quadriradiata, Panicum dichotomiflorum, Setaria geniculata, and Lolium persicum) under exposures of 0 (T0), 5 (T5), 25 (T25), and 50 mg·kg-1 (T50) soil Cd concentrations to screen for potential Cd accumulators for phytoremediation. The results showed that the biomasses of both shoots and roots of G. quadriradiata had no significant changes compared to the control (T0) samples under all Cd treatments, whereas the biomass of the other three Poaceae species significantly decreased under the T25 or T50 treatment. The results indicate that G. quadriradiata had stronger Cd tolerance than the other three species. The Cd concentrations in the shoots and roots of the four herbs significantly increased with an increase in soil Cd concentrations, but the shoot bioconcentration factors (SBCF) of the four plant species significantly decreased under T5, T25, and T50 treatment. The SBCF of G. quadriradiata and P. dichotomiflorum were greater than 1 whereas those of S. geniculata and L. persicum were lower than 1. The translocation factors (TF) of G. quadriradiata were 0.93, 0.73, and 1.04 under T5, T25, and T50 treatment, respectively, which were significantly higher than those of the other three plants under the same soil Cd concentration. In addition, both the total Cd and shoot Cd contents of G. quadriradiata were notably higher than in the other three species under the same Cd treatment. Moreover, 90% of the Cd in G. quadriradiata could be transferred aboveground, which was significantly higher than for the other three plants. Based on our comprehensive comparison of Cd tolerance and accumulation capacity, we suggest that G. quadriradiata is a high-Cd accumulator with considerable phytoremediation potential.


Asunto(s)
Cadmio , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Raíces de Plantas/química , Suelo , Contaminantes del Suelo/análisis
7.
Cladistics ; 32(4): 360-389, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34740298

RESUMEN

The lycophyte genus Selaginella alone constitutes the family Selaginellaceae, the largest of the lycophyte families. The genus is estimated to contain 700-800 species distributed on all continents except Antarctica, with highest species diversity in tropical and subtropical regions. The monophyly of Selaginella in this broad sense has rarely been doubted, whereas its intrageneric classification has been notoriously contentious. Previous molecular studies were based on very sparse sampling of Selaginella (up to 62 species) and often used DNA sequence data from one genome. In the present study, DNA sequences of one plastid (rbcL) and one nuclear (ITS) locus from 394 accessions representing approximately 200 species of Selaginella worldwide were used to infer a phylogeny using maximum likelihood, Bayesian inference and maximum parsimony methods. The study identifies strongly supported major clades and well resolves relationships among them. Major results include: (i) six deep-level clades are discovered representing the deep splits of Selaginella; and (ii) 20 major clades representing 20 major evolutionary lineages are identified, which differ from one another in molecular, macro-morphological, ecological and spore features, and/or geographical distribution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA