Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(34): 6955-6959, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39135428

RESUMEN

A method for the direct synthesis of N-aryl lactams and amides with aryl halides and N-chloroamides through a Ni-catalyzed reductive C-N coupling reaction has been developed. The reaction features the advantages of mild conditions, good functional group tolerance and broad substrate scope including drug-derived substrates, and also provided direct access to the key synthetic intermediates for some bioactive molecules, suggesting the practicability of this method. Finally, DFT calculations were performed to shed further light on the reaction mechanism and it was found that an amidyl radical might be involved.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38917653

RESUMEN

Cortex Morin Radicis (CMR) is the dried root bark of Morus alba. L. It has a variety of effects such as antibacterial, anti-tumour, treatment of cardiovascular diseases or upper respiratory tract disease and so on. The pursuit for drugs selected from Cortex Mori Radicis having improved therapeutic efficacy necessitates increasing research on new assays for screening bioactive compounds with multi-targets. In this work, we applied immobilized ß1-AR and ß2-AR as the stationary phase in chromatographic column to screen bioactive compounds from Cortex Morin Radicis. Specific ligands of the two receptors (e.g. esmolol, metoprolol, atenolol, salbutamol, methoxyphenamine, tulobuterol and clorprenaline) were utilized to characterize the specificity and bioactivity of the columns. We used high performance affinity chromatography coupled with ESI-MS to screen targeted compounds of Cortex Morin Radicis. By zonal elution, we identified morin as a bioactive compound simultaneously binding to ß1-AR and ß2-AR. The compound exhibited the association constants of 3.10 × 104 and 2.60 × 104 M-1 on the ß1-AR and ß2-AR column. On these sites, the dissociation rate constants were calculated to be 0.131 and 0.097 s-1. Molecular docking indicated that the binding of morin to the two receptors occurred on Asp200, Asp121, and Val122 of ß1-AR, Asn312, Thr110, Asp113, Tyr316, Gly90, Phe193, Ile309, and Trp109 of ß2-AR. Likewise, mulberroside C was identified as the bioactive compound binding to ß2-AR. The association constants and dissociation rate constants were calculated to be 1.08 × 104 M-1 and 0.900 s-1. Molecular docking also indicated that mulberroside C could bind to ß2-AR receptor on its agonist site. Taking together, we demonstrated that the chromatographic strategy to identify bioactive natural products based on the ß1-AR and ß2-AR immobilization, has potential for screening bioactive compounds with multi-targets from complex matrices including traditional Chinese medicines.


Asunto(s)
Morus , Receptores Adrenérgicos beta 1 , Receptores Adrenérgicos beta 2 , Morus/química , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 1/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Cromatografía de Afinidad/métodos , Humanos , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Flavonoides/química
3.
Front Bioeng Biotechnol ; 11: 1173247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122868

RESUMEN

Wound healing has been a great challenge throughout human history. Improper treatment for wounds is so easy to lead to infection and a series of serious symptoms, even death. Because of the ability of absorbing fluid and keeping a moist environment, the hydrogel with 3D networks is ideal candidate for wound dressing. More important, it has good biocompatibility. However, most of the hydrogel dressings reported have weak mechanical properties and adhesion properties, which greatly limit their clinical application. Herein, a tough adhesive hydrogel with good mechanical stability for non-invasive wound repair is reported. The hydrogel is composed of polyethylene glycol dimethacrylate (PEGDA), chitosan (CS) and chitin nano-whisker (CW). PEGDA and CS form interpenetrating network hydrogel through free radical polymerization reaction under the UV light. The introduction of CW further enhances the toughness of the hydrogel. The pH-sensitive CS can form adhesion to various materials through topological adhesion. As a wound closure repair material, PEGDA/CS/CW hydrogel not only has the characteristic of effectively closing the wound, defending against invading bacteria, and keeping the wound clean, but also has good tensile and mechanical stability, which is expected to realize the closure and repair of joints and other moving parts of the wound. This adhesive hydrogel is proven a promising material for wound closure repair.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA