Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1453529, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39310787

RESUMEN

Background: Although the Chufeng Qingpi Decoction (CQD) has demonstrated clinical effectiveness in the treatment of schistosomiasis, the precise active components and the underlying mechanisms of its therapeutic action remain elusive. To achieve a profound comprehension, we incorporate network pharmacology, bioinformatics analysis, molecular docking, and molecular dynamics simulations as investigative methodologies within our research framework. Method: Utilizing TCMSP and UniProt, we identified formula components and targets. Cytoscape 3.10.0 was used to construct an herb-target interaction network. Genecards, DisGeNET, and OMIM databases were examined for disease-related objectives. A Venn diagram identified the intersection of compound and disease targets. Using Draw Venn, overlapping targets populated STRING for PPI network. CytoNCA identified schistosomiasis treatment targets. GO & KEGG enrichment analysis followed High-scoring genes in PPI were analyzed by LASSO, RF, SVM-RFE. Molecular docking & simulations investigated target-compound interactions. Result: The component's target network encompassed 379 nodes, 1629 edges, highlighting compounds such as wogonin, kaempferol, luteolin, and quercetin. Amongst the proteins within the PPI network, PTGS2, TNF, TGFB1, BCL2, TP53, IL10, JUN, MMP2, IL1B, and MYC stood out as the most prevalent entities. GO and KEGG revealed that mainly involved the responses to UV, positive regulation of cell migration and motility. The signal pathways encompassed Pathways in cancer, Lipid and atherosclerosis, Fluid shear stress and atherosclerosis, as well as the AGE-RAGE. Bioinformatics analysis indicated TP53 was the core gene. Ultimately, the molecular docking revealed that wogonin, kaempferol, luteolin, and quercetin each exhibited significant affinity in their respective interactions with TP53. Notably, kaempferol exhibited the lowest binding energy, indicating a highly stable interaction with TP53. Lastly, we validated the stability of the binding interaction between the four small molecules and the TP53 through molecular dynamics simulations. The molecular dynamics simulation further validated the strongest binding between TP53 and kaempferol. In essence, our research groundbreaking in its nature elucidates for the first time the underlying molecular mechanism of CQD in the therapeutic management of schistosomiasis, thereby providing valuable insights and guidance for the treatment of this disease. Conclusion: This study uncovered the efficacious components and underlying molecular mechanisms of the Chufeng Qingpi Decoction in the management of schistosomiasis, thereby offering valuable insights for future fundamental research endeavors.


Asunto(s)
Medicamentos Herbarios Chinos , Aprendizaje Automático , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Farmacología en Red , Esquistosomiasis , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Esquistosomiasis/tratamiento farmacológico , Humanos , Biología Computacional/métodos , Mapas de Interacción de Proteínas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Quempferoles/farmacología , Quercetina/farmacología , Flavanonas
2.
Front Cell Infect Microbiol ; 14: 1405627, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015338

RESUMEN

Introduction: Gejie Zhilao Pill (GJZLP), a traditional Chinese medicine formula is known for its unique therapeutic effects in treating pulmonary tuberculosis. The aim of this study is to further investigate its underlying mechanisms by utilizing network pharmacology and molecular docking techniques. Methods: Using TCMSP database the components, potential targets of GJZLP were identified. Animal-derived components were supplemented through the TCMID and BATMAN-TCM databases. Tuberculosis-related targets were collected from the TTD, OMIM, and GeneCards databases. The intersection target was imported into the String database to build the PPI network. The Metascape platform was employed to carry out Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Heatmaps were generated through an online platform (https://www.bioinformatics.com.cn). Molecular docking was conducted between the core targets and core compounds to explore their binding strengths and patterns at the molecular level. Results: 61 active ingredients and 118 therapeutic targets were identified. Quercetin, Luteolin, epigallocatechin gallate, and beta-sitosterol showed relatively high degrees in the network. IL6, TNF, JUN, TP53, IL1B, STAT3, AKT1, RELA, IFNG, and MAPK3 are important core targets. GO and KEGG revealed that the effects of GJZLP on tuberculosis mainly involve reactions to bacterial molecules, lipopolysaccharides, and cytokine stimulation. Key signaling pathways include TNF, IL-17, Toll-like receptor and C-type lectin receptor signaling. Molecular docking analysis demonstrated a robust binding affinity between the core compounds and the core proteins. Stigmasterol exhibited the lowest binding energy with AKT1, indicating the most stable binding interaction. Discussion: This study has delved into the efficacious components and molecular mechanisms of GJZLP in treating tuberculosis, thereby highlighting its potential as a promising therapeutic candidate for the treatment of tuberculosis.


Asunto(s)
Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Humanos , Mapas de Interacción de Proteínas , Medicina Tradicional China , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Antituberculosos/química , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Transducción de Señal/efectos de los fármacos , Animales , Ontología de Genes , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA