Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166690, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36921738

RESUMEN

Most gastrointestinal stromal tumors (GIST) harbor mutated receptor tyrosine kinase (RTK) KIT/PDGFRA, which provides an attractive therapeutic target. However, a majority of GISTs ultimately develop resistance to KIT/PDGFRA inhibitor imatinib, multiple therapeutic targets will be identified as a reasonable strategy in imatinib-resistant GISTs. Biological mechanisms of non-RTK activated CDC42 associated kinase 1 (ACK1) are still unclear, which has been found to be activated in GISTs. In the current report, ACK1 overexpression is demonstrated in GIST cell lines and biopsies. RNA-seq analysis and immunoblotting show that ACK1 expression is dependent on imatinib treatment time in GIST-T1 cell line. The colocalization/complex of KIT and ACK1 in GIST cells are observed, and ACK1 activation is in a partially KIT and CDC42 dependent manner. Treatment with a specific ACK1 inhibitor AIM-100 or ACK1 siRNA, mildly suppresses cell viability, but markedly inhibits cell migration in imatinib sensitive and in imatinib resistant GIST cell lines, which is associated with inactivation of PI3K/AKT/mTOR and RAF/MAPK signaling pathways, and inhibition of epithelial-mesenchymal transition, evidencing upregulation of E-cadherin and downregulation of ZEB1, N-cadherin, vimentin, snail, and/or ß-catenin after treatment with AIM-100 or ACK1/CDC42 shRNAs. Combination inhibition of ACK1 and KIT results in additive effects of anti-proliferation and pro-apoptosis as well as cell cycle arrest, and inhibition of invasiveness and migration in vitro and in vivo, compared to either intervention alone through dephosphorylation of KIT downstream intermediates (AKT, S6, and MAPK). Our data suggest that co-targeting of ACK1 and KIT might be a novel therapeutic strategy in imatinib-resistant GIST.


Asunto(s)
Tumores del Estroma Gastrointestinal , Humanos , Resistencia a Antineoplásicos/genética , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/patología , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA