Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 428
Filtrar
2.
iScience ; 27(8): 110455, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39139405

RESUMEN

This randomized, double-blind, placebo-controlled trial investigated the impact of 14-day Anaerobutyricum soehngenii L2-7 supplementation on postprandial glucose levels in 25 White Dutch males with type 2 diabetes (T2D) on stable metformin therapy. The primary endpoint was the effect of A. soehngenii versus placebo on glucose excursions and variability as determined by continuous glucose monitoring. Secondary endpoints were changes in ambulatory 24-h blood pressure, incretins, circulating metabolites and excursions of plasma short-chain fatty acids (SCFAs) and bile acids upon a standardized meal. Results showed that A. soehngenii supplementation for 14 days significantly improved glycemic variability and mean arterial blood pressure, without notable changes in SCFAs, bile acids, incretin levels, or anthropometric parameters as compared to placebo-treated controls. Although well-tolerated and effective in improving glycemic control in the intervention group, further research in larger and more diverse populations is needed to generalize these findings.

3.
Nat Commun ; 15(1): 6696, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107277

RESUMEN

Allosteric modulation is a central mechanism for metabolic regulation but has yet to be described for a gut microbiota-host interaction. Phenylacetylglutamine (PAGln), a gut microbiota-derived metabolite, has previously been clinically associated with and mechanistically linked to cardiovascular disease (CVD) and heart failure (HF). Here, using cells expressing ß1- versus ß2-adrenergic receptors (ß1AR and ß2AR), PAGln is shown to act as a negative allosteric modulator (NAM) of ß2AR, but not ß1AR. In functional studies, PAGln is further shown to promote NAM effects in both isolated male mouse cardiomyocytes and failing human heart left ventricle muscle (contracting trabeculae). Finally, using in silico docking studies coupled with site-directed mutagenesis and functional analyses, we identified sites on ß2AR (residues E122 and V206) that when mutated still confer responsiveness to canonical ß2AR agonists but no longer show PAGln-elicited NAM activity. The present studies reveal the gut microbiota-obligate metabolite PAGln as an endogenous NAM of a host GPCR.


Asunto(s)
Microbioma Gastrointestinal , Glutamina , Miocitos Cardíacos , Receptores Adrenérgicos beta 2 , Animales , Humanos , Masculino , Ratones , Regulación Alostérica , Glutamina/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/microbiología , Células HEK293 , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/genética
4.
Arterioscler Thromb Vasc Biol ; 44(9): 2136-2141, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39114916

RESUMEN

BACKGROUND: Although artificial and non-nutritive sweeteners are widely used and generally recognized as safe by the US and European Union regulatory agencies, there have been no clinical trials to assess either long-term cardiovascular disease risks or short-term cardiovascular disease-relevant phenotypes. Recent studies report that fasting plasma levels of erythritol, a commonly used sweetener, are clinically associated with heightened incident cardiovascular disease risks and enhance thrombosis potential in vitro and in animal models. Effects of dietary erythritol on thrombosis phenotypes in humans have not been examined. METHODS: Using a prospective interventional study design, we tested the impact of erythritol or glucose consumption on multiple indices of stimulus-dependent platelet responsiveness in healthy volunteers (n=10 per group). Erythritol plasma levels were quantified with liquid chromatography tandem mass spectrometry. Platelet function at baseline and following erythritol or glucose ingestion was assessed via both aggregometry and analysis of granule markers released. RESULTS: Dietary erythritol (30 g), but not glucose (30 g), lead to a >1000-fold increase in erythritol plasma concentration (6480 [5930-7300] versus 3.75 [3.35-3.87] µmol/L; P<0.0001) and exhibited acute enhancement of stimulus-dependent aggregation responses in all subjects, agonists, and doses examined. Erythritol ingestion also enhanced stimulus-dependent release of the platelet dense granule marker serotonin (P<0.0001 for TRAP6 [thrombin activator peptide 6] and P=0.004 for ADP) and the platelet α-granule marker CXCL4 (C-X-C motif ligand-4; P<0.0001 for TRAP6 and P=0.06 for ADP). In contrast, glucose ingestion triggered no significant increases in stimulus-dependent release of either serotonin or CXCL4. CONCLUSIONS: Ingestion of a typical quantity of the non-nutritive sweetener erythritol, but not glucose, enhances platelet reactivity in healthy volunteers, raising concerns that erythritol consumption may enhance thrombosis potential. Combined with recent large-scale clinical observational studies and mechanistic cell-based and animal model studies, the present findings suggest that discussion of whether erythritol should be reevaluated as a food additive with the Generally Recognized as Safe designation is warranted. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04731363.


Asunto(s)
Plaquetas , Eritritol , Glucosa , Voluntarios Sanos , Agregación Plaquetaria , Trombosis , Humanos , Eritritol/sangre , Eritritol/administración & dosificación , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Masculino , Trombosis/sangre , Trombosis/inducido químicamente , Trombosis/prevención & control , Estudios Prospectivos , Agregación Plaquetaria/efectos de los fármacos , Femenino , Adulto , Edulcorantes no Nutritivos/administración & dosificación , Edulcorantes no Nutritivos/efectos adversos , Adulto Joven , Factor Plaquetario 4/sangre , Espectrometría de Masas en Tándem , Persona de Mediana Edad , Serotonina/sangre , Edulcorantes/administración & dosificación , Pruebas de Función Plaquetaria
5.
Circ Heart Fail ; 17(8): e011569, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39119698

RESUMEN

BACKGROUND: Growing evidence indicates that trimethylamine N-oxide, a gut microbial metabolite of dietary choline and carnitine, promotes both cardiovascular disease and chronic kidney disease risk. It remains unclear how circulating concentrations of trimethylamine N-oxide and its related dietary and gut microbe-derived metabolites (choline, betaine, carnitine, γ-butyrobetaine, and crotonobetaine) affect incident heart failure (HF). METHODS: We evaluated 11 768 participants from the Cardiovascular Health Study and the Multi-Ethnic Study of Atherosclerosis with serial measures of metabolites. Cox proportional hazard models were used to examine the associations between metabolites and incident HF, adjusted for cardiovascular disease risk factors. RESULTS: In all, 2102 cases of HF occurred over a median follow-up of 15.9 years. After adjusting for traditional risk factors, higher concentrations of trimethylamine N-oxide (hazard ratio, 1.15 [95% CI, 1.09-1.20]; P<0.001), choline (hazard ratio, 1.44 [95% CI, 1.26-1.64]; P<0.001), and crotonobetaine (hazard ratio, 1.24 [95% CI, 1.16-1.32]; P<0.001) were associated with increased risk for incident HF. After further adjustment for renal function (potential confounder or mediator), these associations did not reach Bonferroni-corrected statistical significance (P=0.01, 0.049, and 0.006, respectively). Betaine and carnitine were nominally associated with a higher incidence of HF (P<0.05). In exploratory analyses, results were similar for subtypes of HF based on left ventricular ejection fraction, and associations appeared generally stronger among Black and Hispanic/Latino versus White adults, although there were no interactions for any metabolites with race. CONCLUSIONS: In this pooled analysis of 2 well-phenotyped, diverse, community-based cohorts, circulating concentrations of gut microbe-derived metabolites such as trimethylamine N-oxide, choline, and crotonobetaine were independently associated with a higher risk of developing HF. REGISTRATION: URL: https://www.clinicaltrials.gov/; Unique identifiers: NCT00005133 and NCT00005487.


Asunto(s)
Betaína , Carnitina , Colina , Microbioma Gastrointestinal , Insuficiencia Cardíaca , Metilaminas , Humanos , Metilaminas/sangre , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/etnología , Insuficiencia Cardíaca/sangre , Microbioma Gastrointestinal/fisiología , Femenino , Masculino , Anciano , Persona de Mediana Edad , Incidencia , Colina/sangre , Carnitina/análogos & derivados , Carnitina/sangre , Betaína/sangre , Betaína/análogos & derivados , Estados Unidos/epidemiología , Factores de Riesgo , Biomarcadores/sangre , Anciano de 80 o más Años
6.
Hypertension ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034917

RESUMEN

BACKGROUND: The microbiota-derived short chain fatty acid butyrate has been shown to lower blood pressure (BP) in rodent studies. Nonetheless, the net effect of butyrate on hypertension in humans remains uncovered. In this study, for the first time, we aimed to determine the effect of oral butyrate on BP in patients with hypertension. METHODS: We performed a double-blind randomized placebo-controlled trial including 23 patients with hypertension. Antihypertensive medication was discontinued for the duration of the study with a washout period of 4 weeks before starting the intervention. Participants received daily oral capsules containing either sodium butyrate or placebo with an equivalent dosage of sodium chloride for 4 weeks. The primary outcome was daytime 24-hour systolic BP. Differences between groups over time were assessed using linear mixed models (group-by-time interaction). RESULTS: Study participants (59.0±3.7 years; 56.5% female) had an average baseline office systolic BP of 143.5±14.6 mm Hg and diastolic BP of 93.0±8.3 mm Hg. Daytime 24-hour systolic and diastolic BP significantly increased over the intervention period in the butyrate compared with the placebo group, with an increase of +9.63 (95% CI, 2.02-17.20) mm Hg in daytime 24-hour systolic BP and +5.08 (95% CI, 1.34-8.78) mm Hg in diastolic BP over 4 weeks. Butyrate levels significantly increased in plasma, but not in feces, upon butyrate intake, underscoring its absorption. CONCLUSIONS: Four-week treatment with oral butyrate increased daytime systolic and diastolic BP in subjects with hypertension. Our findings implicate that butyrate does not have beneficial effects on human hypertension, which warrants caution in future butyrate intervention studies. REGISTRATION: URL: https://clinicaltrialregister.nl/nl/trial/22936; Unique identifier: NL8924.

7.
Eur Heart J ; 45(27): 2439-2452, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38842092

RESUMEN

BACKGROUND AND AIMS: The pathways and metabolites that contribute to residual cardiovascular disease risks are unclear. Low-calorie sweeteners are widely used sugar substitutes in processed foods with presumed health benefits. Many low-calorie sweeteners are sugar alcohols that also are produced endogenously, albeit at levels over 1000-fold lower than observed following consumption as a sugar substitute. METHODS: Untargeted metabolomics studies were performed on overnight fasting plasma samples in a discovery cohort (n = 1157) of sequential stable subjects undergoing elective diagnostic cardiac evaluations; subsequent stable isotope dilution liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses were performed on an independent, non-overlapping validation cohort (n = 2149). Complementary isolated human platelet, platelet-rich plasma, whole blood, and animal model studies examined the effect of xylitol on platelet responsiveness and thrombus formation in vivo. Finally, an intervention study was performed to assess the effects of xylitol consumption on platelet function in healthy volunteers (n = 10). RESULTS: In initial untargeted metabolomics studies (discovery cohort), circulating levels of a polyol tentatively assigned as xylitol were associated with incident (3-year) major adverse cardiovascular event (MACE) risk. Subsequent stable isotope dilution LC-MS/MS analyses (validation cohort) specific for xylitol (and not its structural isomers) confirmed its association with incident MACE risk [third vs. first tertile adjusted hazard ratio (95% confidence interval), 1.57 (1.12-2.21), P < .01]. Complementary mechanistic studies showed xylitol-enhanced multiple indices of platelet reactivity and in vivo thrombosis formation at levels observed in fasting plasma. In interventional studies, consumption of a xylitol-sweetened drink markedly raised plasma levels and enhanced multiple functional measures of platelet responsiveness in all subjects. CONCLUSIONS: Xylitol is associated with incident MACE risk. Moreover, xylitol both enhanced platelet reactivity and thrombosis potential in vivo. Further studies examining the cardiovascular safety of xylitol are warranted.


Asunto(s)
Enfermedades Cardiovasculares , Xilitol , Humanos , Xilitol/farmacología , Xilitol/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Enfermedades Cardiovasculares/epidemiología , Trombosis , Edulcorantes/efectos adversos , Edulcorantes/farmacología , Anciano , Animales , Metabolómica , Espectrometría de Masas en Tándem , Adulto , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Factores de Riesgo de Enfermedad Cardiaca
8.
Nat Commun ; 15(1): 4276, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769296

RESUMEN

Alterations in gut microbiota composition are suggested to contribute to cardiometabolic diseases, in part by producing bioactive molecules. Some of the metabolites are produced by very low abundant bacterial taxa, which largely have been neglected due to limits of detection. However, the concentration of microbially produced metabolites from these taxa can still reach high levels and have substantial impact on host physiology. To explore this concept, we focused on the generation of secondary bile acids by 7α-dehydroxylating bacteria and demonstrated that addition of a very low abundant bacteria to a community can change the metabolic output dramatically. We show that Clostridium scindens converts cholic acid into the secondary bile acid deoxycholic acid (DCA) very efficiently even though the abundance of C. scindens is low, but still detectable by digital droplet PCR. We also show that colonization of germ-free female mice with a community containing C. scindens induces DCA production and affects host metabolism. Finally, we show that DCA correlates with impaired glucose metabolism and a worsened lipid profile in individuals with type 2 diabetes, which implies that this metabolic pathway may contribute to the development of cardiometabolic disease.


Asunto(s)
Ácido Desoxicólico , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Glucosa , Ácido Desoxicólico/metabolismo , Animales , Microbioma Gastrointestinal/fisiología , Femenino , Glucosa/metabolismo , Ratones , Humanos , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/metabolismo , Ratones Endogámicos C57BL , Clostridium/metabolismo , Clostridium/genética , Ácido Cólico/metabolismo , Masculino
10.
Diabetes ; 73(8): 1215-1228, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701355

RESUMEN

Bile acids (BAs) are cholesterol-derived compounds that regulate glucose, lipid, and energy metabolism. Despite their significance in glucose homeostasis, the association between specific BA molecular species and their synthetic pathways with diabetes is unclear. Here, we used a recently validated, stable-isotope dilution, high-performance liquid chromatography with tandem mass spectrometry method to quantify a panel of BAs in fasting plasma from 2,145 study participants and explored structural and genetic determinants of BAs linked to diabetes, insulin resistance, and obesity. Multiple 12α-hydroxylated BAs were associated with diabetes (adjusted odds ratio [aOR] range, 1.3-1.9; P < 0.05 for all) and insulin resistance (aOR range, 1.3-2.2; P < 0.05 for all). Conversely, multiple 6α-hydroxylated BAs and isolithocholic acid (iso-LCA) were inversely associated with diabetes and obesity (aOR range, 0.3-0.9; P < 0.05 for all). Genome-wide association studies revealed multiple genome-wide significant loci linked with 9 of the 14 diabetes-associated BAs, including a locus for iso-LCA (rs11866815). Mendelian randomization analyses showed genetically elevated deoxycholic acid levels were causally associated with higher BMI, and iso-LCA levels were causally associated with reduced BMI and diabetes risk. In conclusion, comprehensive, large-scale, quantitative mass spectrometry and genetics analyses show circulating levels of multiple structurally specific BAs, especially DCA and iso-LCA, are clinically associated with and genetically linked to obesity and diabetes.


Asunto(s)
Ácidos y Sales Biliares , Estudio de Asociación del Genoma Completo , Resistencia a la Insulina , Obesidad , Humanos , Ácidos y Sales Biliares/sangre , Masculino , Femenino , Persona de Mediana Edad , Obesidad/genética , Obesidad/sangre , Resistencia a la Insulina/genética , Adulto , Diabetes Mellitus/sangre , Diabetes Mellitus/genética , Diabetes Mellitus/epidemiología , Polimorfismo de Nucleótido Simple , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/sangre , Anciano , Análisis de la Aleatorización Mendeliana
12.
Mayo Clin Proc ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38678458

RESUMEN

OBJECTIVE: To evaluate the association between trimethylamine N-oxide (TMAO) and related metabolites with adverse cardiovascular events in a multiethnic urban primary prevention population. METHODS: We performed a case-control study of 361 participants of the Dallas Heart Study, including 88 participants with an incident atherosclerotic cardiovascular disease (ASCVD) event and 273 controls matched for age, sex, and body mass index without an ASCVD event during 12 years of follow-up (January 1, 2000, through December 31, 2015). Plasma levels of TMAO, choline, carnitine, betaine, and butyrobetaine were measured by mass spectrometry. The differential odds for incident ASCVD by metabolite levels between cases and controls were compared by a conditional logistic regression model adjusted for cardiovascular risk factors. RESULTS: Participants with incident ASCVD had higher levels of TMAO and related metabolites compared with those without ASCVD (P<.05 for all). Those with plasma TMAO concentrations in quartile 4 had a more than 2-fold higher odds of ASCVD compared with those in quartile 1 (odds ratio, 2.77 [95% CI, 1.05 to 7.7; P=.04] for hard ASCVD and 2.41 [95% CI, 1.049 to 5.709; P=.04]). Similar trends were seen with the related metabolites choline, betaine, carnitine, and butyrobetaine. CONCLUSION: Our results suggest that TMAO and related metabolites are independently associated with ASCVD events. Although further studies are needed, measurement of TMAO and related metabolites may have a role in ASCVD risk stratification for primary prevention.

14.
Nat Med ; 30(2): 424-434, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38374343

RESUMEN

Despite intensive preventive cardiovascular disease (CVD) efforts, substantial residual CVD risk remains even for individuals receiving all guideline-recommended interventions. Niacin is an essential micronutrient fortified in food staples, but its role in CVD is not well understood. In this study, untargeted metabolomics analysis of fasting plasma from stable cardiac patients in a prospective discovery cohort (n = 1,162 total, n = 422 females) suggested that niacin metabolism was associated with incident major adverse cardiovascular events (MACE). Serum levels of the terminal metabolites of excess niacin, N1-methyl-2-pyridone-5-carboxamide (2PY) and N1-methyl-4-pyridone-3-carboxamide (4PY), were associated with increased 3-year MACE risk in two validation cohorts (US n = 2,331 total, n = 774 females; European n = 832 total, n = 249 females) (adjusted hazard ratio (HR) (95% confidence interval) for 2PY: 1.64 (1.10-2.42) and 2.02 (1.29-3.18), respectively; for 4PY: 1.89 (1.26-2.84) and 1.99 (1.26-3.14), respectively). Phenome-wide association analysis of the genetic variant rs10496731, which was significantly associated with both 2PY and 4PY levels, revealed an association of this variant with levels of soluble vascular adhesion molecule 1 (sVCAM-1). Further meta-analysis confirmed association of rs10496731 with sVCAM-1 (n = 106,000 total, n = 53,075 females, P = 3.6 × 10-18). Moreover, sVCAM-1 levels were significantly correlated with both 2PY and 4PY in a validation cohort (n = 974 total, n = 333 females) (2PY: rho = 0.13, P = 7.7 × 10-5; 4PY: rho = 0.18, P = 1.1 × 10-8). Lastly, treatment with physiological levels of 4PY, but not its structural isomer 2PY, induced expression of VCAM-1 and leukocyte adherence to vascular endothelium in mice. Collectively, these results indicate that the terminal breakdown products of excess niacin, 2PY and 4PY, are both associated with residual CVD risk. They also suggest an inflammation-dependent mechanism underlying the clinical association between 4PY and MACE.


Asunto(s)
Enfermedades Cardiovasculares , Niacina , Femenino , Humanos , Ratones , Animales , Modelos de Riesgos Proporcionales , Inflamación
15.
Cancer ; 130(11): 1982-1990, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285606

RESUMEN

BACKGROUND: Dietary intake influences gut microbiome composition, which in turn may be associated with colorectal cancer (CRC). Associations of the gut microbiome with colorectal carcinogenesis may be mediated through bacterially regulated, metabolically active metabolites, including trimethylamine N-oxide (TMAO) and its precursors, choline, L-carnitine, and betaine. METHODS: Prospective associations of circulating TMAO and its precursors with CRC risk were investigated. TMAO, choline, betaine, and L-carnitine were measured in baseline serum samples from 761 incident CRC cases and 1:1 individually matched controls in the prospective Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial Cohort using targeted fully quantitative liquid chromatography tandem mass spectrometry panels. Prospective associations of the metabolites with CRC risk, using multivariable conditional logistic regression, were measured. Associations of a priori-selected dietary exposures with the four metabolites were also investigated. RESULTS: TMAO and its precursors were not associated with CRC risk overall, but TMAO and choline were positively associated with higher risk for distal CRC (continuous ORQ90 vs. Q10 [95% CI] = 1.90 [CI, 1.24-2.92; p = .003] and 1.26 [1.17-1.36; p < .0001], respectively). Conversely, choline was inversely associated with rectal cancer (ORQ90 vs. Q10 [95% CI] = 0.77 [0.76-0.79; p < .001]). Red meat, which was previously associated with CRC risk in the Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial Cohort , was positively associated with TMAO (Spearman rho = 0.10; p = .0003). CONCLUSIONS: Serum TMAO and choline may be associated with higher risk of distal CRC, and red meat may be positively associated with serum TMAO. These findings provide insight into a potential microbially mediated mechanism underlying CRC etiology.


Asunto(s)
Colina , Neoplasias Colorrectales , Detección Precoz del Cáncer , Metilaminas , Neoplasias de la Próstata , Humanos , Metilaminas/sangre , Masculino , Femenino , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/epidemiología , Persona de Mediana Edad , Anciano , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/epidemiología , Neoplasias de la Próstata/diagnóstico , Colina/sangre , Detección Precoz del Cáncer/métodos , Estudios Prospectivos , Carnitina/sangre , Neoplasias Ováricas/sangre , Neoplasias Ováricas/epidemiología , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/epidemiología , Estudios de Casos y Controles , Betaína/sangre , Factores de Riesgo , Microbioma Gastrointestinal
16.
Circ Res ; 134(4): 371-389, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38264909

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a common but poorly understood form of heart failure, characterized by impaired diastolic function. It is highly heterogeneous with multiple comorbidities, including obesity and diabetes, making human studies difficult. METHODS: Metabolomic analyses in a mouse model of HFpEF showed that levels of indole-3-propionic acid (IPA), a metabolite produced by gut bacteria from tryptophan, were reduced in the plasma and heart tissue of HFpEF mice as compared with controls. We then examined the role of IPA in mouse models of HFpEF as well as 2 human HFpEF cohorts. RESULTS: The protective role and therapeutic effects of IPA were confirmed in mouse models of HFpEF using IPA dietary supplementation. IPA attenuated diastolic dysfunction, metabolic remodeling, oxidative stress, inflammation, gut microbiota dysbiosis, and intestinal epithelial barrier damage. In the heart, IPA suppressed the expression of NNMT (nicotinamide N-methyl transferase), restored nicotinamide, NAD+/NADH, and SIRT3 (sirtuin 3) levels. IPA mediates the protective effects on diastolic dysfunction, at least in part, by promoting the expression of SIRT3. SIRT3 regulation was mediated by IPA binding to the aryl hydrocarbon receptor, as Sirt3 knockdown diminished the effects of IPA on diastolic dysfunction in vivo. The role of the nicotinamide adenine dinucleotide circuit in HFpEF was further confirmed by nicotinamide supplementation, Nnmt knockdown, and Nnmt overexpression in vivo. IPA levels were significantly reduced in patients with HFpEF in 2 independent human cohorts, consistent with a protective function in humans, as well as mice. CONCLUSIONS: Our findings reveal that IPA protects against diastolic dysfunction in HFpEF by enhancing the nicotinamide adenine dinucleotide salvage pathway, suggesting the possibility of therapeutic management by either altering the gut microbiome composition or supplementing the diet with IPA.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Propionatos , Sirtuina 3 , Humanos , Ratones , Animales , Insuficiencia Cardíaca/metabolismo , Volumen Sistólico/fisiología , NAD , Sirtuina 3/genética , Indoles/farmacología , Niacinamida
17.
Eur J Heart Fail ; 26(2): 233-241, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38124458

RESUMEN

AIM: Phenylacetylglutamine (PAGln) is a phenylalanine-derived metabolite produced by gut microbiota with mechanistic links to heart failure (HF)-relevant phenotypes. We sought to investigate the prognostic value of PAGln in patients with stable HF. METHODS AND RESULTS: Fasting plasma PAGln levels were measured by stable-isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) in patients with stable HF from two large cohorts. All-cause mortality was assessed at 5-year follow-up in the Cleveland cohort, and HF, hospitalization, or mortality were assessed at 3-year follow-up in the Berlin cohort. Within the Cleveland cohort, median PAGln levels were 4.2 (interquartile range [IQR] 2.4-6.9) µM. Highest quartile of PAGln was associated with 3.09-fold increased mortality risk compared to lowest quartile. Following adjustments for traditional risk factors, as well as race, estimated glomerular filtration rate, amino-terminal pro-B-type natriuretic peptide, high-sensitivity C-reactive protein, left ventricular ejection fraction, ischaemic aetiology, and HF drug treatment, elevated PAGln levels remained predictive of 5-year mortality in quartile comparisons (adjusted hazard ratio [HR] [95% confidence interval, CI] for Q4 vs Q1: 1.64 [1.07-2.53]). In the Berlin cohort, a similar distribution of PAGln levels was observed (median 3.2 [IQR 2.0-4.8] µM), and PAGln levels were associated with a 1.92-fold increase in 3-year HF hospitalization or all-cause mortality risk (adjusted HR [95% CI] for Q4 vs Q1: 1.92 [1.02-3.61]). Prognostic value of PAGln appears to be independent of trimethylamine N-oxide levels. CONCLUSION: High levels of PAGln are associated with adverse outcomes independent of traditional cardiac risk factors and cardio-renal risk markers.


Asunto(s)
Microbioma Gastrointestinal , Glutamina/análogos & derivados , Insuficiencia Cardíaca , Humanos , Pronóstico , Biomarcadores , Volumen Sistólico , Cromatografía Liquida , Función Ventricular Izquierda , Espectrometría de Masas en Tándem
18.
JAMA Netw Open ; 6(12): e2347296, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085542

RESUMEN

Importance: Preclinical studies suggest a potential role for aspirin in slowing abdominal aortic aneurysm (AAA) progression and preventing rupture. Evidence on the clinical benefit of aspirin in AAA from human studies is lacking. Objective: To investigate the association of aspirin use with aneurysm progression and long-term clinical outcomes in patients with AAA. Design, Setting, and Participants: This was a retrospective, single-center cohort study. Adult patients with at least 2 available vascular ultrasounds at the Cleveland Clinic were included, and patients with history of aneurysm repair, dissection, or rupture were excluded. All patients were followed up for 10 years. Data were analyzed from May 2022 to July 2023. Main Outcomes and Measures: Clinical outcomes were time-to-first occurrence of all-cause mortality, major bleeding, or composite of dissection, rupture, and repair. Multivariable-adjusted Cox proportional-hazard regression was used to estimate hazard ratios (HR) for all-cause mortality, and subhazard ratios competing-risk regression using Fine and Gray proportional subhazards regression was used for major bleeding and composite outcome. Aneurysm progression was assessed by comparing the mean annualized change of aneurysm diameter using multivariable-adjusted linear regression and comparing the odds of having rapid progression (annual diameter change >0.5 cm per year) using logistic regression. Results: A total of 3435 patients (mean [SD] age 73.7 [9.0] years; 2672 male patients [77.5%]; 120 Asian, Hispanic, American Indian, or Pacific Islander patients [3.4%]; 255 Black patients [7.4%]; 3060 White patients [89.0%]; and median [IQR] follow-up, 4.9 [2.5-7.5] years) were included in the final analyses, of which 2150 (63%) were verified to be taking aspirin by prescription. Patients taking aspirin had a slower mean (SD) annualized change in aneurysm diameter (2.8 [3.0] vs 3.8 [4.2] mm per year; P = .001) and lower odds of having rapid aneurysm progression compared with patients not taking aspirin (adjusted odds ratio, 0.64; 95% CI, 0.49-0.89; P = .002). Aspirin use was not associated with risk of all-cause mortality (adjusted HR [aHR], 0.92; 95% CI, 0.79-1.07; P = .32), nor was aspirin use associated with major bleeding (aHR, 0.88; 95% CI, 0.76-1.03; P = .12), or composite outcome (aHR, 1.16; 95% CI, 0.93-1.45; P = .09) at 10 years. Conclusions: In this retrospective study of a clinical cohort of 3435 patients with objectively measured changes in aortic aneurysm growth, aspirin use was significantly associated with slower progression of AAA with a favorable safety profile.


Asunto(s)
Aneurisma de la Aorta Abdominal , Procedimientos Endovasculares , Adulto , Humanos , Masculino , Anciano , Estudios Retrospectivos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Estudios de Cohortes , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Aspirina/uso terapéutico , Hemorragia/etiología
19.
bioRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014234

RESUMEN

The glioblastoma microenvironment is enriched in immunosuppressive factors that potently interfere with the function of cytotoxic T lymphocytes. Cancer cells can directly impact the immune system, but the mechanisms driving these interactions are not completely clear. Here we demonstrate that the polyamine metabolite spermidine is elevated in the glioblastoma tumor microenvironment. Exogenous administration of spermidine drives tumor aggressiveness in an immune-dependent manner in pre-clinical mouse models via reduction of CD8+ T cell frequency and phenotype. Knockdown of ornithine decarboxylase, the rate-limiting enzyme in spermidine synthesis, did not impact cancer cell growth in vitro but did result in extended survival. Furthermore, glioblastoma patients with a more favorable outcome had a significant reduction in spermidine compared to patients with a poor prognosis. Our results demonstrate that spermidine functions as a cancer cell-derived metabolite that drives tumor progression by reducing CD8+T cell number and function.

20.
mBio ; : e0133123, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37947418

RESUMEN

p-Cresol sulfate (pCS) and indoxyl sulfate (IS), gut microbiome-derived metabolites, are traditionally associated with cardiovascular disease (CVD) risks in the setting of impaired kidney function. While pharmacologic provision of pCS or IS can promote pro-thrombotic phenotypes, neither the microbial enzymes involved nor direct gut microbial production have been linked to CVD. Untargeted metabolomics was performed on a discovery cohort (n = 1,149) with relatively preserved kidney function, followed by stable isotope-dilution mass spectrometry quantification of pCS and IS in an independent validation cohort (n = 3,954). Genetic engineering of human commensals to produce p-cresol and indole gain-of-function and loss-of-function mutants, followed by colonization of germ-free mice, and studies on host thrombosis were performed. Systemic pCS and IS levels were independently associated with all-cause mortality. Both in vitro and within colonized germ-free mice p-cresol productions were recapitulated by collaboration of two organisms: a Bacteroides strain that converts tyrosine to 4-hydroxyphenylacetate, and a Clostridium strain that decarboxylates 4-hydroxyphenylacetate to p-cresol. We then engineered a single organism, Bacteroides thetaiotaomicron, to produce p-cresol, indole, or both metabolites. Colonizing germ-free mice with engineered strains, we show the gut microbial genes for p-cresol (hpdBCA) and indole (tryptophanase) are sufficient to confer a pro-thrombotic phenotype in vivo. Moreover, human fecal metagenomics analyses show that abundances of hpdBCA and tryptophanase are associated with CVD. These studies show that pCS and IS, two abundant microbiome-derived metabolites, play a broader potential role in CVD than was previously known. They also suggest that therapeutic targeting of gut microbial p-cresol- and indole-producing pathways represent rational targets for CVD.IMPORTANCEAlterations in gut microbial composition and function have been linked to numerous diseases. Identifying microbial pathways responsible for producing molecules that adversely impact the host is an important first step in the development of therapeutic interventions. Here, we first use large-scale clinical observations to link blood levels of defined microbial products to cardiovascular disease risks. Notably, the previously identified uremic toxins p-cresol sulfate and indoxyl sulfate were shown to predict 5-year mortality risks. After identifying the microbes and microbial enzymes involved in the generation of these uremic toxins, we used bioengineering technologies coupled with colonization of germ-free mice to show that the gut microbial genes that generate p-cresol and indole are sufficient to confer p-cresol sulfate and indoxyl sulfate formation, and a pro-thrombotic phenotype in vivo. The findings and tools developed serve as a critical step in both the study and targeting of these gut microbial pathways in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA