Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 260: 121910, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38901310

RESUMEN

Freshwater ecosystems are critical resources for drinking water. In recent decades, dissolved organic matter (DOM) inputs into aquatic systems have increased significantly, particularly in central and northern Europe, due to climatic and anthropogenic drivers. The associated increase in dissolved organic carbon (DOC) concentration can change lake ecosystem services and adversely affect drinking water treatment processes. In this study, we examined spatial and temporal patterns of DOM treatability with granular activated carbon (GAC) and biological reactivity based on 14-day bacterial respiration incubations at 11 sites across Mälaren during six-time points between July 2019 and February 2021. Mälaren is the third largest lake in Sweden and provides drinking water for over 2 million people including the capital city Stockholm. In our spatio-temporal analysis, we assessed the influence of phytoplankton abundance, water chemistry, runoff, and climate on DOM composition, GAC removal efficiency, and biological reactivity. Variations in DOM composition were characterized using optical measurements and Orbitrap mass spectrometry. Multivariate statistical analyses indicated that DOM produced during warmer months was easier to remove by GAC. Removal efficiency of GAC varied from 41 to 87 %, and the best predictor of treatability using mass spectrometry was double bond equivalents (DBE), while the best optical predictors were specific UV absorbance (SUVA), and freshness index. The oxygen consumption rate (k) from the bacterial respiration incubations ranged from 0.04 to 0.71 d-1 and higher in warmer months and at deeper basins and was associated with more aliphatic and fresh DOM. The three deepest lake basins with the longest water residence time (WRT) were temporally the most stable in terms of DOM composition and had the highest DOC removal efficiency and k rates. DOM composition in these three lake basins was optically clearer than in basins located closer to terrestrial inputs and had a signature suggesting it was derived from in-lake processes including phytoplankton production and bacterial processing of terrestrial DOM. This means that with increasing WRT, DOM derived from terrestrial sources shifts to more aquatically produced DOM and becomes easier to remove with GAC. These findings indicate WRT can be highly relevant in shaping DOM composition and thereby likely to affect its ease of treatability for drinking water purposes.


Asunto(s)
Agua Potable , Purificación del Agua , Agua Potable/química , Purificación del Agua/métodos , Lagos/química , Suecia , Carbón Orgánico/química
2.
Environ Sci Technol ; 58(16): 7078-7086, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38608252

RESUMEN

Dissolved organic matter (DOM) is a vast and complex chemical mixture that plays a key role in the mediation of the global carbon cycle. Fundamental understanding of the source and fate of oceanic organic matter is obscured due to poor definition of the key molecular contributors to DOM, which limits accurate sample analysis and prediction of the Earth's carbon cycle. Previous work has attempted to define the components of the DOM through a variety of chromatographic and spectral techniques. However, modern preparative and analytical methods have not isolated or unambiguously identified molecules from DOM. Therefore, previously proposed structures are based solely on the mixture's aggregate properties and do not accurately describe any true individual molecular component. In addition to this, there is a lack of appropriate analogues of the individual chemical classes within DOM, limiting the scope of experiments that probe the physical, chemical, and biological contributions from each class. To address these problems, we synthesized a series of analogues of carboxylate-rich alicyclic molecules (CRAM), a molecular class hypothesized to exist as a major contributor to DOM. Key analytical features of the synthetic CRAMs were consistent with marine DOM, supporting their suitability as chemical substitutes for CRAM. This new approach provides access to a molecular toolkit that will enable previously inaccessible experiments to test many unproven hypotheses surrounding the ever-enigmatic DOM.

3.
Environ Sci Technol ; 57(36): 13463-13472, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37646447

RESUMEN

Aquatic dissolved organic matter (DOM) is a crucial component of the global carbon cycle, and the extent to which DOM escapes mineralization is important for the transport of organic carbon from the continents to the ocean. DOM persistence strongly depends on its molecular properties, but little is known about which specific properties cause the continuum in reactivity among different dissolved molecules. We investigated how DOM fractions, separated according to their hydrophobicity, differ in biodegradability across three different inland water systems. We found a strong negative relationship between hydrophobicity and biodegradability, consistent for the three systems. The most hydrophilic fraction was poorly recovered by solid-phase extraction (SPE) (3-28% DOC recovery) and was thus selectively missed by mass spectrometry analysis during SPE. The change in DOM composition after incubation was very low according to SPE-ESI (electrospray ionization)-mass spectrometry (14% change, while replicates had 11% change), revealing that this method is sub-optimal to assess DOM biodegradability, regardless of fraction hydrophobicity. Our results demonstrate that SPE-ESI mass spectrometry does not detect the most hydrophilic and most biodegradable species. Hence, they question our current understanding of the relationships between DOM biodegradability and its molecular composition, which is built on the use of this method.


Asunto(s)
Carbono , Materia Orgánica Disuelta , Ciclo del Carbono , Agua Dulce , Espectrometría de Masa por Ionización de Electrospray
4.
RSC Adv ; 13(35): 24594-24603, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37593662

RESUMEN

Dissolved organic matter (DOM) is widely studied in environmental and biogeochemical sciences, but is susceptible to chemical and biological degradation during sample transport and storage. Samples taken in remote regions, aboard ships, or in large numbers need to be preserved for later analysis without changing DOM composition. Here we compare high-resolution mass spectra of solid phase extractable DOM before and after freezing at -20 °C. We found that freezing increases compositional dissimilarity in DOM by between 0 to 18.2% (median = 2.7% across 7 sites) when comparing replicates that were frozen versus unfrozen, i.e., processed immediately after sampling, as compared with differences between unfrozen replicates. The effects of freezing primarily consisted of a poorer detection limit, but were smaller than other sample preparation and analysis steps, such as solid phase extraction and variable ionisation efficiency. Freezing samples for either 21 or 95 days led to similar and only slight changes in DOM composition, albeit with more variation for the latter. Therefore, we conclude that sample freezing on these time scales should not impede scientific study of aquatic DOM and can be used where it makes logistical sense, such as for large spatial surveys or study of archived samples.

5.
ACS Med Chem Lett ; 14(6): 802-809, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37312845

RESUMEN

Small synthetic mimics of cationic antimicrobial peptides represent a promising class of compounds with leads in clinical development for the treatment of persistent microbial infections. The activity and selectivity of these compounds rely on a balance between hydrophobic and cationic components, and here, we explore the activity of 19 linear cationic tripeptides against five different pathogenic bacteria and fungi, including clinical isolates. The compounds incorporated modified hydrophobic amino acids inspired by motifs often found in bioactive marine secondary metabolites in combination with different cationic residues to probe the possibility of generating active compounds with improved safety profiles. Several of the compounds displayed high activity (low µM concentrations), comparable with the positive controls AMC-109, amoxicillin, and amphotericin B. A higher activity was observed against the fungal strains, and a low in vitro off-target toxicity was observed against erythrocytes and HeLa cells, thereby illustrating effective means for tuning the activity and selectivity of short antimicrobial peptides.

6.
Anal Chem ; 95(16): 6559-6567, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37052954

RESUMEN

Recent methodological advances have greatly increased our ability to characterize aquatic dissolved organic matter (DOM) using high-resolution instrumentation, including nuclear magnetic resonance (NMR) and mass spectrometry (HRMS). Reliable DOM reference materials are required for further method development and data set alignment but do not currently exist for the marine environment. This presents a major limitation for marine biogeochemistry and related fields, including natural product discovery. To fill this resource gap, we have prepared a coastal marine DOM reference material (TRM-0522) from 45 m deep seawater obtained ∼1 km offshore of Sweden's west coast. Over 3000 molecular formulas were assigned by direct infusion HRMS, confirming sample diversity, and the distribution of formulas in van Krevelen space was typical for a marine sample, with the majority of formulas in the region H/C 1-1.5 and O/C 0.3-0.7. The extracted DOM pool was more nitrogen (N)- and sulfur (S)-rich than a typical terrestrial reference material (SRFA). MZmine3 processing of ultrahigh-performance liquid chromatography (UPLC)-HRMS/MS data revealed 494 resolvable features (233 in negative mode; 261 in positive mode) over a wide range of retention times and masses. NMR data indicated low contributions from aromatic protons and, generally speaking, low lignin, humic, and fulvic substances associated with terrestrial samples. Instead, carboxylic-rich aliphatic molecules were the most abundant components, followed by carbohydrates and aliphatic functionalities. This is consistent with a very low specific UV absorbance SUVA254 value of 1.52 L mg C-1 m-1. When combined with comparisons with existing terrestrial reference materials (Suwannee River fulvic acid and Pony Lake fulvic acid), these results suggest that TRM-0522 is a useful and otherwise unavailable reference material for use in marine DOM biogeochemistry.

7.
Environ Sci Technol ; 56(18): 13119-13130, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36069707

RESUMEN

Neurotoxic methylmercury (MeHg) is formed by microbial methylation of inorganic divalent Hg (HgII) and constitutes severe environmental and human health risks. The methylation is enabled by hgcA and hgcB genes, but it is not known if the associated molecular-level processes are rate-limiting or enable accurate prediction of MeHg formation in nature. In this study, we investigated the relationships between hgc genes and MeHg across redox-stratified water columns in the brackish Baltic Sea. We showed, for the first time, that hgc transcript abundance and the concentration of dissolved HgII-sulfide species were strong predictors of both the HgII methylation rate and MeHg concentration, implying their roles as principal joint drivers of MeHg formation in these systems. Additionally, we characterized the metabolic capacities of hgc+ microorganisms by reconstructing their genomes from metagenomes (i.e., hgc+ MAGs), which highlighted the versatility of putative HgII methylators in the water column of the Baltic Sea. In establishing relationships between hgc transcripts and the HgII methylation rate, we advance the fundamental understanding of mechanistic principles governing MeHg formation in nature and enable refined predictions of MeHg levels in coastal seas in response to the accelerating spread of oxygen-deficient zones.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Humanos , Mercurio/análisis , Compuestos de Metilmercurio/metabolismo , Oxígeno , Aguas Salinas , Sulfuros , Agua , Contaminantes Químicos del Agua/análisis
8.
Ecology ; 103(9): e3763, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35612376

RESUMEN

Despite our growing understanding of the global carbon cycle, scientific consensus on the drivers and mechanisms that control dissolved organic carbon (DOC) turnover in aquatic systems is lacking, hampered by the mismatch between research that approaches DOC reactivity from either intrinsic (inherent chemical properties) or extrinsic (environmental context) perspectives. Here we propose a conceptual view of DOC reactivity in which the combination of intrinsic and extrinsic factors controls turnover rates and determines which reactions will occur. We review three major types of reactions (biological, photochemical, and flocculation) from an intrinsic chemical perspective and further define the environmental features that modulate the expression of chemically inherent reactivity potential. Finally, we propose hypotheses of how extrinsic and intrinsic factors together shape patterns in DOC turnover across the land-to-ocean continuum, underscoring that there is no intrinsic DOC reactivity without environmental context. By acknowledging the intrinsic-extrinsic control duality, our framework intends to foster improved modeling of DOC reactivity and its impact on ecosystem services.


Asunto(s)
Materia Orgánica Disuelta , Ecosistema , Carbono/metabolismo , Ciclo del Carbono
9.
Environ Sci Technol ; 56(5): 3096-3105, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35175743

RESUMEN

Oil sands process waters can release toxic naphthenic acids (NAs) into aquatic environments. Analytical techniques for NAs are challenged by sample complexity and interference from naturally occurring dissolved organic matter (DOM). Herein, we report the use of a poly(dimethylsiloxane) (PDMS) polymer membrane for the on-line separation of NAs from DOM and use direct infusion electrospray ionization mass spectrometry to yield meaningful qualitative and quantitative information with minimal sample cleanup. We compare the composition of membrane-permeable species from natural waters fortified with a commercial NA mixture to those derived from weak anion exchange solid-phase extraction (SPE) using high-resolution mass spectrometry. The results show that SPE retains a wide range of carboxylic acids, including biogenic DOM, while permeation through PDMS was selective for petrogenic classically defined NAs (CnH2n+zO2). A series of model compounds (log Kow ∼1-7) were used to characterize the perm-selectivity and reveal the separation is based on hydrophobicity. This convenient sample cleanup method is selective for the O2 class of NAs and can be used prior to conventional analysis or as an on-line analytical strategy when coupled directly to mass spectrometry.


Asunto(s)
Materia Orgánica Disuelta , Yacimiento de Petróleo y Gas , Contaminantes Químicos del Agua , Ácidos Carboxílicos/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Contaminantes Químicos del Agua/análisis
10.
J Nat Prod ; 85(1): 215-224, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34910498

RESUMEN

During a research program to identify new cholinesterase inhibitors of natural origin, two new 7,8-didehydroprotoberberine alkaloids (1 and 2) and nine known compounds (3-11) were isolated from the capsules of the common ornamental poppy, Papaver setiferum (previously P. pseudo-orientale). Despite their reported instability, the 7,8-didehydroprotoberberines isolated herein appeared relatively stable, particularly as their trifluoroacetic acid salts. The spatial distributions of the isolated alkaloids were also analyzed using desorption electrospray ionization imaging mass spectrometry. The alkaloids were localized predominantly within the walls and vascular bundles of the capsules, with the highest relative abundances occurring in the lower half of the capsules toward the peduncle. The relative abundances of the alkaloids were also compared across plant development stages. Although most alkaloids did not show clear patterns in their concentration across development stages, the concentration of suspected oxidation products clearly spiked upon plant death. Finally, all isolated natural products were screened for inhibitory activities against a panel of cholinesterases, from both human and animal sources. These studies identified several competitive inhibitors of cholinesterases with potency in the low micromolar range (1-4, 6, 7), offering new lead compounds for the development of cholinesterase inhibitory drugs.


Asunto(s)
Alcaloides de Berberina/farmacología , Inhibidores de la Colinesterasa/farmacología , Papaver/química , Animales , Alcaloides de Berberina/química , Humanos , Espectrometría de Masa por Ionización de Electrospray
11.
Sci Data ; 8(1): 221, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413318

RESUMEN

Thermokarst activity at permafrost sites releases considerable amounts of ancient carbon to the atmosphere. A large part of this carbon is released via thermokarst ponds, and fungi could be an important organismal group enabling its recycling. However, our knowledge about aquatic fungi in thermokarstic systems is extremely limited. In this study, we collected samples from five permafrost sites distributed across circumpolar Arctic and representing different stages of permafrost integrity. Surface water samples were taken from the ponds and, additionally, for most of the ponds also the detritus and sediment samples were taken. All the samples were extracted for total DNA, which was then amplified for the fungal ITS2 region of the ribosomal genes. These amplicons were sequenced using PacBio technology. Water samples were also collected to analyze the chemical conditions in the ponds, including nutrient status and the quality and quantity of dissolved organic carbon. This dataset gives a unique overview of the impact of the thawing permafrost on fungal communities and their potential role on carbon recycling.


Asunto(s)
Hongos/clasificación , Micobioma , Hielos Perennes/microbiología , Estanques/microbiología , Regiones Árticas , Código de Barras del ADN Taxonómico , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , ADN Espaciador Ribosómico/genética , Congelación , Hongos/genética , Hongos/aislamiento & purificación , Estanques/química
12.
Glob Chang Biol ; 27(22): 5889-5906, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34462999

RESUMEN

Climate change-driven permafrost thaw has a strong influence on pan-Arctic regions, via, for example, the formation of thermokarst ponds. These ponds are hotspots of microbial carbon cycling and greenhouse gas production, and efforts have been put on disentangling the role of bacteria and archaea in recycling the increasing amounts of carbon arriving to the ponds from degrading watersheds. However, despite the well-established role of fungi in carbon cycling in the terrestrial environments, the interactions between permafrost thaw and fungal communities in Arctic freshwaters have remained unknown. We integrated data from 60 ponds in Arctic hydro-ecosystems, representing a gradient of permafrost integrity and spanning over five regions, namely Alaska, Greenland, Canada, Sweden, and Western Siberia. The results revealed that differences in pH and organic matter quality and availability were linked to distinct fungal community compositions and that a large fraction of the community represented unknown fungal phyla. Results display a 16%-19% decrease in fungal diversity, assessed by beta diversity, across ponds in landscapes with more degraded permafrost. At the same time, sites with similar carbon quality shared more species, aligning a shift in species composition with the quality and availability of terrestrial dissolved organic matter. We demonstrate that the degradation of permafrost has a strong negative impact on aquatic fungal diversity, likely via interactions with the carbon pool released from ancient deposits. This is expected to have implications for carbon cycling and climate feedback loops in the rapidly warming Arctic.


Asunto(s)
Hielos Perennes , Regiones Árticas , Ecosistema , Hongos , Estanques
13.
Microorganisms ; 9(5)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063040

RESUMEN

Rust fungi cause epidemics that threaten the production of important plant species, such as wheat and soy. Melampsora larici-populina (Mlp) causes the poplar rust and encodes at least 1184 candidate effectors (CEs) whose functions are poorly known. In this study, we sequenced the transcriptome and used mass spectrometry to analyze the metabolome of Arabidopsis plants constitutively expressing 14 Mlp CEs and of a control line to discover alterations leading to plant susceptibility. We found 2299 deregulated genes across the experiment. Genes involved in pattern-triggered immunity, such as FRK1, PR1, RBOHD, and WRKY33, as well as AUX/IAA genes were down-regulated. We further observed that 680 metabolites were deregulated in at least one CE-expressing transgenic line, with "highly unsaturated and phenolic compounds" and "peptides" enriched among down- and up-regulated metabolites. Interestingly, transgenic lines expressing unrelated CEs had correlated patterns of gene and metabolite deregulation, while expression of CEs belonging to the same family deregulated different genes and metabolites. Thus, our results uncouple effector sequence similarity and function. This supports that effector functional investigation in the context of their virulence activity and effect on plant susceptibility requires the investigation of the individual effector and precludes generalization based on sequence similarity.

14.
Microb Cell Fact ; 20(1): 39, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33557832

RESUMEN

BACKGROUND: Cyanobacteria are promising hosts for the production of various industrially important compounds such as succinate. This study focuses on introduction of the glyoxylate shunt, which is naturally present in only a few cyanobacteria, into Synechocystis PCC 6803. In order to test its impact on cell metabolism, engineered strains were evaluated for succinate accumulation under conditions of light, darkness and anoxic darkness. Each condition was complemented by treatments with 2-thenoyltrifluoroacetone, an inhibitor of succinate dehydrogenase enzyme, and acetate, both in nitrogen replete and deplete medium. RESULTS: We were able to introduce genes encoding the glyoxylate shunt, aceA and aceB, encoding isocitrate lyase and malate synthase respectively, into a strain of Synechocystis PCC 6803 engineered to overexpress phosphoenolpyruvate carboxylase. Our results show that complete expression of the glyoxylate shunt results in higher extracellular succinate accumulation compared to the wild type control strain after incubation of cells in darkness and anoxic darkness in the presence of nitrate. Addition of the inhibitor 2-thenoyltrifluoroacetone increased succinate titers in all the conditions tested when nitrate was available. Addition of acetate in the presence of the inhibitor further increased the succinate accumulation, resulting in high levels when phosphoenolpyruvate carboxylase was overexpressed, compared to control strain. However, the highest succinate titer was obtained after dark incubation of an engineered strain with a partial glyoxylate shunt overexpressing isocitrate lyase in addition to phosphoenolpyruvate carboxylase, with only 2-thenoyltrifluoroacetone supplementation to the medium. CONCLUSIONS: Heterologous expression of the glyoxylate shunt with its central link to the tricarboxylic acid cycle (TCA) for acetate assimilation provides insight on the coordination of the carbon metabolism in the cell. Phosphoenolpyruvate carboxylase plays an important role in directing carbon flux towards the TCA cycle.


Asunto(s)
Proteínas Bacterianas , Glioxilatos/metabolismo , Ingeniería Metabólica , Fosfoenolpiruvato Carboxiquinasa (ATP) , Ácido Succínico/metabolismo , Synechocystis , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/biosíntesis , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Synechocystis/genética , Synechocystis/metabolismo
15.
J Am Soc Mass Spectrom ; 32(1): 394-397, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33232162

RESUMEN

In this paper we investigate interferences that appear in molecular mass spectra from aquatic samples. The interferences are identified as doubly charged ions originating from high molecular weight material, which is especially abundant in terrestrial samples. The interferences could be incorrectly assigned to singly charged formulas with high aromaticity and heteroatom content, as the mass error from such formulas can be less than 1 ppm. We propose a strategy for filtering the interference peaks from mass lists based on the presence of their equivalent isotopologue peaks at mass defects of ∼0.5 Da.

16.
Anal Chem ; 92(20): 14210-14218, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32940031

RESUMEN

Electrospray ionization (ESI) operating in the negative mode coupled to high-resolution mass spectrometry is the most popular technique for the characterization of dissolved organic matter (DOM). The vast molecular heterogeneity and the functional group diversity of this complex mixture prevents the efficient ionization of the organic material by a single ionization source, so the presence of uncharacterized material is unavoidable. The extent of this poorly ionizable pool of carbon is unknown, is presumably variable between samples, and can only be assessed by the combination of analysis with a uniform detection method. Charged aerosol detection (CAD), whose response is proportional to the amount of nonvolatile material and is independent from the physicochemical properties of the analytes, is a suitable candidate. In this study, a fulvic acid mixture was fractionated and analyzed by high-pressure liquid chromatography-mass spectrometry in order to investigate the polarity and size distributions of highly and poorly ionizable material in the sample. Additionally, DOM samples of terrestrial and marine origins were analyzed to evaluate the variability of these pools across the land-sea aquatic continuum. The relative response factor values indicated that highly ionizable components of aquatic DOM mixtures are more hydrophilic and have lower molecular weight than poorly ionizable components. Additionally, a discrepancy between the samples of terrestrial and marine origins was found, indicating that marine samples are better represented by ESI than terrestrial samples, which have an abundant portion of hydrophobic poorly ionizable material.

17.
Anal Chem ; 92(10): 6832-6838, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32298576

RESUMEN

Untargeted molecular analyses of complex mixtures are relevant for many fields of research, including geochemistry, pharmacology, and medicine. Ultrahigh-resolution mass spectrometry is one of the most powerful tools in this context. The availability of open scripts and online tools for specific data processing steps such as noise removal or molecular formula assignment is growing, but an integrative tool where all crucial steps are reproducibly evaluated and documented is lacking. We developed a novel, server-based tool (ICBM-OCEAN, Institute for Chemistry and Biology of the Marine Environment, Oldenburg-complex molecular mixtures, evaluation & analysis) that integrates published and novel approaches for standardized processing of ultrahigh-resolution mass spectrometry data of complex molecular mixtures. Different from published approaches, we offer diagnostic and validation tools for all relevant steps. Among other features, we included objective and reproducible reduction of noise and systematic errors, spectra recalibration and alignment, and identification of likeliest molecular formulas. With 15 chemical elements, the tool offers high flexibility in formula attribution. Alignment of mass spectra among different samples prior to molecular formula assignment improves mass error and facilitates molecular formula confirmation with the help of isotopologues. The online tool and the detailed instruction manual are freely accessible at www.icbm.de/icbm-ocean.

18.
Analyst ; 145(5): 1789-1800, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-31950125

RESUMEN

High-resolution mass spectrometry (HRMS) elucidates the molecular composition of dissolved organic matter (DOM) through the unequivocal assignment of molecular formulas. When HRMS is used as a detector coupled to high performance liquid chromatography (HPLC), the molecular fingerprints of DOM are further augmented. However, the identification of eluting compounds remains impossible when DOM chromatograms consist of unresolved humps. Here, we utilized the concept of mathematical chromatography to achieve information reduction and feature extraction. Parallel Factor Analysis (PARAFAC) was applied to a dataset describing the reverse-phase separation of DOM in headwater streams located in southeast Sweden. A dataset consisting of 1355 molecular formulas and 7178 mass spectra was reduced to five components that described 96.89% of the data. Each component summarized the distinct chromatographic elution of molecular formulas with different polarity. Component scores represented the abundance of the identified HPLC features in each sample. Using this chemometric approach allowed the identification of common patterns in HPLC-HRMS datasets by reducing thousands of mass spectra to only a few statistical components. Unlike in principal component analysis (PCA), components closely followed the analytical principles of HPLC-HRMS and therefore represented more realistic pools of DOM. This approach provides a wealth of new opportunities for unravelling the composition of complex mixtures in natural and engineered systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA