Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Ecol ; 99(8)2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37370225

RESUMEN

The European spruce bark beetle, Ips typographus, is a serious pest of spruce forests in Europe, and its invasion and development inside spruce tissues are facilitated by microorganisms. We investigated the core gut bacterial and fungal microbiomes of I. typographus throughout its life cycle in spring and summer generations. We used cultivation techniques and molecular identification in combination with DNA and RNA metabarcoding. Our results revealed that communities differ throughout their life cycle and across generations in proportion of dominantly associated microbes, rather than changes in species composition. The bacteriome consisted mostly of the phylum Gammaproteobacteria, with the most common orders and genera being Enterobacteriales (Erwinia and Serratia), Pseudomonadales (Pseudomonas), and Xanthomonadales. The fungal microbiome was dominated by yeasts (Saccharomycetes-Wickerhamomyces, Kuraishia, and Nakazawaea), followed by Sordariomycetes (Ophiostoma bicolor and Endoconidiophora polonica). We did not observe any structure ensuring long-term persistence of microbiota on any part of the gut epithelium, suggesting that microbial cells are more likely to pass through the beetle's gut with chyme. The most abundant taxa in the beetle's gut were also identified as dominant in intact spruce phloem. Therefore, we propose that these taxa are acquired from the environment rather than specifically vectored between generations.


Asunto(s)
Escarabajos , Microbioma Gastrointestinal , Picea , Gorgojos , Animales , Escarabajos/microbiología , Corteza de la Planta , Estaciones del Año , Gorgojos/microbiología , Estadios del Ciclo de Vida , Picea/microbiología
2.
Front Microbiol ; 14: 1108975, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077248

RESUMEN

Spruce bark beetle Ips typographus can trigger outbreaks on spruce that results in significant losses in the forest industry. It has been suggested that symbiotic microorganisms inhabiting the gut of bark beetles facilitate the colonization of plant tissues as they play a role in the detoxification of plant secondary metabolites, degrade plant cell wall and ameliorate beetle's nutrition. In this study, we sequenced and functionally annotated the genomes of five yeasts Kuraishia molischiana, Cryptococcus sp., Nakazawaea ambrosiae, Ogataea ramenticola, and Wickerhamomyces bisporus isolated from the gut of Ips typographus. Genome analysis identified 5314, 7050, 5722, 5502, and 5784 protein coding genes from K. molischiana, Cryptococcus sp., N. ambrosiae, O. ramenticola, and W. bisporus, respectively. Protein-coding sequences were classified into biological processes, cellular and molecular function based on gene ontology terms enrichment. Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation was used to predict gene functions. All analyzed yeast genomes contain full pathways for the synthesis of essential amino acids and vitamin B6, which have nutritional importance to beetle. Furthermore, their genomes contain diverse gene families related to the detoxification processes. The prevalent superfamilies are aldo-keto reductase, ATP-binding cassette and the major facilitator transporters. The phylogenetic relationships of detoxification-related enzymes aldo-keto reductase, and cytochrome P450 monooxygenase, and ATP-binding cassette are presented. Genome annotations also revealed presence of genes active in lignocellulose degradation. In vitro analyses did not confirm enzymatic endolytic degradation of lignocellulose; however, all species can utilize and pectin and produce a large spectrum of exolytic enzymes attacking cellulose, chitin, and lipids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA