Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
CJC Open ; 4(12): 1043-1052, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36562012

RESUMEN

Background: Doxorubicin-induced cardiomyopathy (DICM) is one of the complications that can limit treatment for a significant number of cancer patients. In animal models, the administration of statins can prevent the development of DICM. Therefore, the use of statins with anthracyclines potentially could enable cancer patients to complete their chemotherapy without added cardiotoxicity. The precise mechanism mediating the cardioprotection is not well understood. The purpose of this study is to determine the molecular mechanism by which rosuvastatin confers cardioprotection in a mouse model of DICM. Methods: Rosuvastatin was intraperitoneally administered into adult male mice at 100 µg/kg daily for 7 days, followed by a single intraperitoneal doxorubicin injection at 10 mg/kg. Animals continued to receive rosuvastatin daily for an additional 14 days. Cardiac function was assessed by echocardiography. Optical calcium mapping was performed on retrograde Langendorff perfused isolated hearts. Ventricular tissue samples were analyzed by immunofluorescence microscopy, Western blotting, and quantitative polymerase chain reaction. Results: Exposure to doxorubicin resulted in significantly reduced fractional shortening (27.4% ± 1.11% vs 40% ± 5.8% in controls; P < 0.001) and re-expression of the fetal gene program. However, we found no evidence of maladaptive cardiac hypertrophy or adverse ventricular remodeling in mice exposed to this dose of doxorubicin. In contrast, rosuvastatin-doxorubicin-treated mice maintained their cardiac function (39% ± 1.26%; P < 0.001). Mechanistically, the effect of rosuvastatin was associated with activation of Akt and phosphorylation of phospholamban with preserved sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 (SERCA2)-mediated Ca2+ reuptake. These effects occurred independently of perturbations in ryanodine receptor 2 function. Conclusions: Rosuvastatin counteracts the cardiotoxic effects of doxorubicin by directly targeting sarcoplasmic calcium cycling.


Contexte: La cardiomyopathie induite par la doxorubicine (CMID) est l'une des complications pouvant limiter le traitement d'un nombre considérable de patients atteints de cancer. Dans des modèles animaux, l'administration de statines peut prévenir l'apparition d'une CMID. Ainsi, l'utilisation de statines avec les anthracyclines pourrait vraisemblablement permettre aux patients de compléter leur chimiothérapie en évitant une cardiotoxicité supplémentaire. Le mécanisme précis qui sous-tend cet effet cardioprotecteur n'est pas entièrement élucidé. Cette étude a pour objectif de déterminer dans un modèle murin de CMID le mécanisme moléculaire par lequel la rosuvastatine confère une cardioprotection. Méthodologie: La rosuvastatine a été administrée par voie intrapéritonéale à des souris adultes mâles à une dose de 100 µg/kg par jour pendant sept jours, suivie d'une dose unique de doxorubicine de 10 mg/kg administrée par injection intrapéritonéale. Les animaux poursuivaient ensuite le traitement par la rosuvastatine une fois par jour pendant 14 jours supplémentaires. La fonction cardiaque a été mesurée par échocardiographie. Une cartographie optique du calcium a été réalisée sur des cœurs isolés soumis à une perfusion rétrograde selon la méthode de Langendorff. Des échantillons de tissu ventriculaire ont été analysés par microscopie en immunofluorescence, par buvardage de western et par mesure quantitative de l'amplification en chaîne par polymérase. Résultats: L'exposition à la doxorubicine a entraîné une diminution significative de la fraction de raccourcissement (27,4 % ± 1,11 % vs 40 % ± 5,8 % dans le groupe témoin; p < 0,001) et la réexpression du programme génique fœtal. Toutefois, aucune hypertrophie cardiaque inadaptée ni aucun remodelage ventriculaire indésirable n'ont été observés chez les souris ayant été exposées à la dose de doxorubicine étudiée. En revanche, la fonction cardiaque a été préservée chez les souris traitées par l'association rosuvastatine-doxorubicine (39 % ± 1,26 %; p < 0,001). Sur le plan du mode d'action, l'effet de la rosuvastatine a été associé à une activation de l'Akt et à une phosphorylation du phospholambane, avec préservation du recaptage de Ca2+ médié par la pompe SERCA2 (sarcoplasmic/endoplasmic reticulum Ca 2+ transporting 2). Ces effets sont survenus indépendamment des perturbations de la fonction du récepteur RyR2 (ryanodine receptor 2). Conclusions: La rosuvastatine neutralise les effets cardiotoxiques de la doxorubicine en ciblant directement la circulation sarcoplasmique du calcium.

2.
Clin Sci (Lond) ; 136(12): 911-934, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35723259

RESUMEN

Shortly after birth, mammalian cardiomyocytes (CM) exit the cell cycle and cease to proliferate. The inability of adult CM to replicate renders the heart particularly vulnerable to injury. Restoration of CM proliferation would be an attractive clinical target for regenerative therapies that can preserve contractile function and thus prevent the development of heart failure. Our review focuses on recent progress in understanding the tight regulation of signaling pathways and their downstream molecular mechanisms that underly the inability of CM to proliferate in vivo. In this review, we describe the temporal expression of cell cycle activators e.g., cyclin/Cdk complexes and their inhibitors including p16, p21, p27 and members of the retinoblastoma gene family during gestation and postnatal life. The differential impact of members of the E2f transcription factor family and microRNAs on the regulation of positive and negative cell cycle factors is discussed. This review also highlights seminal studies that identified the coordination of signaling mechanisms that can potently activate CM cell cycle re-entry including the Wnt/Ctnnb1, Hippo, Pi3K-Akt and Nrg1-Erbb2/4 pathways. We also present an up-to-date account of landmark studies analyzing the effect of various genes such as Argin, Dystrophin, Fstl1, Meis1, Pitx2 and Pkm2 that are responsible for either inhibition or activation of CM cell division. All these reports describe bona fide therapeutically targets that could guide future clinical studies toward cardiac repair.


Asunto(s)
Miocitos Cardíacos , Fosfatidilinositol 3-Quinasas , Animales , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , División Celular , Proliferación Celular , Mamíferos , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
3.
Cell Death Differ ; 28(4): 1398-1417, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33288902

RESUMEN

Adult mammalian cardiomyocytes (CM) are postmitotic, differentiated cells that cannot re-enter the cell cycle after any appreciable injury. Therefore, understanding the factors required to induce CM proliferation for repair is of great clinical importance. While expression of muscle pyruvate kinase 2 (Pkm2), a cytosolic enzyme catalyzing the final step in glycolysis, is high in end-stage heart failure (HF), the loss of Pkm2 promotes proliferation in some cellular systems, in vivo. We hypothesized that in the adult heart CM proliferation may require low Pkm2 activity. Thus, we investigated the potential for Pkm2 to regulate CM proliferation in a mouse model of myocardial infarction (MI) employing inducible, cardiac-specific Pkm2 gene knockout (Pkm2KOi) mice. We found a lack of cardiac hypertrophy or expression of the fetal gene program in Pkm2KOi mice post MI, as compared to vehicle control animals (P < 0.01), correlating with smaller infarct size, improved mitochondrial (mt) function, enhanced angiogenesis, reduced degree of CM apoptosis, and reduced oxidative stress post MI. There was significantly higher numbers of dividing CM in the infarct zone between 3-9 days post MI (P < 0.001). Mechanistically, we determined that Pkm2 interacts with ß-catenin (Ctnnb1) in the cytoplasm of CM, inhibiting Ctnnb1 phosphorylation at serine 552 and tyrosine 333, by Akt. In the absence of Pkm2, Ctnnb1 translocates to the nucleus leading to transcriptional activation of proliferation-associated target genes. All these effects are abrogated by genetic co-deletion of Pkm2 and Ctnnb1. Collectively, this work supports a novel antiproliferative function for Pkm2 in CM through the sequestration of Ctnnb1 in the cytoplasm of CM whereas loss of Pkm2 is essential for CM proliferation. Reducing cardiac Pkm2 expression may provide a useful strategy for cardiac repair after MI in patients.


Asunto(s)
Proteínas Portadoras/metabolismo , Ciclo Celular/fisiología , Proteínas de la Membrana/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Apoptosis , Diferenciación Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Fosforilación , beta Catenina/metabolismo , Proteínas de Unión a Hormona Tiroide
4.
PLoS One ; 12(12): e0189861, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29267372

RESUMEN

The maintenance of normal heart function requires proper control of protein turnover. The ubiquitin-proteasome system is a principal regulator of protein degradation. Mdm2 is the main E3 ubiquitin ligase for p53 in mitotic cells thereby regulating cellular growth, DNA repair, oxidative stress and apoptosis. However, which of these Mdm2-related activities are preserved in differentiated cardiomyocytes has yet to be determined. We sought to elucidate the role of Mdm2 in the control of normal heart function. We observed markedly reduced Mdm2 mRNA levels accompanied by highly elevated p53 protein expression in the hearts of wild type mice subjected to myocardial infarction or trans-aortic banding. Accordingly, we generated conditional cardiac-specific Mdm2 gene knockout (Mdm2f/f;mcm) mice. In adulthood, Mdm2f/f;mcm mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction with early mortality post-tamoxifen. A decreased polyubiquitination of myocardial p53 was observed, leading to its stabilization and activation, in the absence of acute stress. In addition, transcriptomic analysis of Mdm2-deficient hearts revealed that there is an induction of E2f1 and c-Myc mRNA levels with reduced expression of the Pgc-1a/Ppara/Esrrb/g axis and Pink1. This was associated with a significant degree of cardiomyocyte apoptosis, and an inhibition of redox homeostasis and mitochondrial bioenergetics. All these processes are early, Mdm2-associated events and contribute to the development of pathological hypertrophy. Our genetic and biochemical data support a role for Mdm2 in cardiac growth control through the regulation of p53, the Pgc-1 family of transcriptional coactivators and the pivotal antioxidant Pink1.


Asunto(s)
Miocardio/metabolismo , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-mdm2/genética , Animales , Apoptosis , Ecocardiografía , Humanos , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Mitocondrias Cardíacas/enzimología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína p53 Supresora de Tumor/metabolismo
5.
Cell Cycle ; 16(17): 1585-1600, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28745540

RESUMEN

Defining the roadblocks responsible for cell cycle arrest in adult cardiomyocytes lies at the core of developing cardiac regenerative therapies. p53 and Mdm2 are crucial mediators of cell cycle arrest in proliferative cell types, however, little is known about their function in regulating homeostasis and proliferation in terminally differentiated cell types, like cardiomyocytes. To explore this, we generated a cardiac-specific conditional deletion of p53 and Mdm2 (DKO) in adult mice. Herein we describe the development of a dilated cardiomyopathy, in the absence of cardiac hypertrophy. In addition, DKO hearts exhibited a significant increase in cardiomyocyte proliferation. Further evaluation showed that proliferation was mediated by a significant increase in Cdk2 and cyclin E with downregulation of p21Cip1 and p27Kip1. Comparison of miRNA expression profiles from DKO mouse hearts and controls revealed 11 miRNAs that were downregulated in the DKO hearts and enriched for mRNA targets involved in cell cycle regulation. Knockdown of these miRNAs in neonatal rat cardiomyocytes significantly increased cytokinesis with an upregulation in the expression of crucial cell cycle regulators. These results illustrate the importance of the cooperative activities of p53 and Mdm2 in a network of miRNAs that function to impose a barrier against aberrant cardiomyocyte cell cycle re-entry to maintain cardiac homeostasis.


Asunto(s)
Puntos de Control del Ciclo Celular , Homeostasis , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Envejecimiento , Animales , Cardiomiopatías/genética , Cardiomiopatías/patología , Ciclo Celular/genética , Puntos de Control del Ciclo Celular/genética , Proliferación Celular/genética , Ciclina E/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo/genética , Eliminación de Gen , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , MicroARNs/genética , Ratas Wistar
6.
Clin Sci (Lond) ; 131(13): 1375-1392, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28645928

RESUMEN

Cardiomyopathies represent a heterogeneous group of diseases that negatively affect heart function. Primary cardiomyopathies specifically target the myocardium, and may arise from genetic [hypertrophic cardiomyopathy (HCM), arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D), mitochondrial cardiomyopathy] or genetic and acquired [dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM)] etiology. Modern genomics has identified mutations that are common in these populations, while in vitro and in vivo experimentation with these mutations have provided invaluable insight into the molecular mechanisms native to these diseases. For example, increased myosin heavy chain (MHC) binding and ATP utilization lead to the hypercontractile sarcomere in HCM, while abnormal protein-protein interaction and impaired Ca2+ flux underlie the relaxed sarcomere of DCM. Furthermore, expanded access to genetic testing has facilitated identification of potential risk factors that appear through inheritance and manifest sometimes only in the advanced stages of the disease. In this review, we discuss the genetic and molecular abnormalities unique to and shared between these primary cardiomyopathies and discuss some of the important advances made using more traditional basic science experimentation.


Asunto(s)
Cardiomiopatías/genética , Mutación , Cardiomiopatías/fisiopatología , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Cardiomiopatía Restrictiva/genética , Cardiomiopatía Restrictiva/fisiopatología , Predisposición Genética a la Enfermedad , Humanos , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/fisiopatología , Neurotransmisores/fisiología , Sarcómeros/fisiología
7.
Sci Rep ; 7: 41490, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28148912

RESUMEN

Cardiac homeostasis requires proper control of protein turnover. Protein degradation is principally controlled by the Ubiquitin-Proteasome System. Mule is an E3 ubiquitin ligase that regulates cellular growth, DNA repair and apoptosis to maintain normal tissue architecture. However, Mule's function in the heart has yet to be described. In a screen, we found reduced Mule expression in left ventricular samples from end-stage heart failure patients. Consequently, we generated conditional cardiac-specific Mule knockout (Mule fl/fl(y);mcm) mice. Mule ablation in adult Mule fl/fl(y);mcm mice prevented myocardial c-Myc polyubiquitination, leading to c-Myc accumulation and subsequent reduced expression of Pgc-1α, Pink1, and mitochondrial complex proteins. Furthermore, these mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction, and early mortality. Co-deletion of Mule and c-Myc rescued this phenotype. Our data supports an indispensable role for Mule in cardiac homeostasis through the regulation of mitochondrial function via maintenance of Pgc-1α and Pink1 expression and persistent negative regulation of c-Myc.


Asunto(s)
Mitocondrias/patología , Miocardio/patología , Estrés Oxidativo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis , Cardiomegalia/complicaciones , Cardiomegalia/metabolismo , Cardiomegalia/patología , Regulación hacia Abajo/genética , Metabolismo Energético , Fibrosis , Eliminación de Gen , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/patología , Humanos , Ratones Noqueados , Mitocondrias/metabolismo , Especificidad de Órganos , Biogénesis de Organelos , Fosforilación Oxidativa , Estabilidad Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(9): 2331-2336, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28193895

RESUMEN

The tumor suppressor Trp53 (p53) inhibits cell growth after acute stress by regulating gene transcription. The mammalian genome contains hundreds of p53-binding sites. However, whether p53 participates in the regulation of cardiac tissue homeostasis under normal conditions is not known. To examine the physiologic role of p53 in adult cardiomyocytes in vivo, Cre-loxP-mediated conditional gene targeting in adult mice was used. Genome-wide transcriptome analyses of conditional heart-specific p53 knockout mice were performed. Genome-wide annotation and pathway analyses of >5,000 differentially expressed transcripts identified many p53-regulated gene clusters. Correlative analyses identified >20 gene sets containing more than 1,000 genes relevant to cardiac architecture and function. These transcriptomic changes orchestrate cardiac architecture, excitation-contraction coupling, mitochondrial biogenesis, and oxidative phosphorylation capacity. Interestingly, the gene expression signature in p53-deficient hearts confers resistance to acute biomechanical stress. The data presented here demonstrate a role for p53, a previously unrecognized master regulator of the cardiac transcriptome. The complex contributions of p53 define a biological paradigm for the p53 regulator network in the heart under physiological conditions.


Asunto(s)
Cardiomegalia/genética , Insuficiencia Cardíaca/genética , Miocitos Cardíacos/metabolismo , Transcriptoma , Proteína p53 Supresora de Tumor/genética , Animales , Apoptosis , Fenómenos Biomecánicos , Cardiomegalia/metabolismo , Cardiomegalia/patología , Proliferación Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Homeostasis , Masculino , Ratones , Ratones Noqueados , Miocitos Cardíacos/patología , Transducción de Señal , Estrés Mecánico , Proteína p53 Supresora de Tumor/deficiencia
9.
Peptides ; 83: 38-48, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27486069

RESUMEN

The cyclin-dependent kinase inhibitor p21(CIP1/WAF1) (p21) is highly expressed in the adult heart. However, in response to stress, its expression is downregulated. Therefore, we investigated the role of p21 in the regulation of cardiac hypertrophic growth. At 2 months of age, p21 knockout mice (p21KO) lack an overt cardiac phenotype. In contrast, by 10 months of age, p21KO developed age-dependent cardiac hypertrophy and heart failure. After 3 weeks of trans-aortic banding (TAB), the heart/body weight ratio in 11 week old p21KO mice increased by 57%, as compared to 42% in wild type mice indicating that p21KO have a higher susceptibility to pressure overload-induced cardiac hypertrophy. We then chronically infused 8 week old wild type mice with Angiotensin II (2.0mg/kg/min) or saline subcutaneously by osmotic pumps for 14 days. Recombinant TAT conjugated p21 protein variants (10mg/kg body weight) or saline were intraperitoneally injected once daily for 14 days into Angiotensin II and saline-infused animals. Angiotensin II treated mice developed pathological cardiac hypertrophy with an average increase of 38% in heart/body weight ratios, as compared to saline-treated controls. Reconstitution of p21 function by TAT.p21 protein transduction prevented Angiotensin II-dependent development of cardiac hypertrophy and failure. Taken together, our genetic and biochemical data show an important function of p21 in the regulation of growth-related processes in the heart.


Asunto(s)
Angiotensina II/metabolismo , Cardiomegalia/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Insuficiencia Cardíaca/genética , Angiotensina II/administración & dosificación , Animales , Cardiomegalia/fisiopatología , Cardiomegalia/terapia , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Regulación de la Expresión Génica/genética , Corazón/crecimiento & desarrollo , Corazón/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Humanos , Ratones , Ratones Noqueados , Proteína Oncogénica v-akt/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteína de Retinoblastoma/genética
10.
Proc Natl Acad Sci U S A ; 110(15): 6085-90, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23530187

RESUMEN

Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the ability of an organism to eliminate these toxic intermediates. Although the Parkinson-susceptibility gene, Parkinson protein 7/DJ-1 (DJ-1), has been linked to the regulation of oxidative stress, the exact mechanism by which this occurs and its in vivo relevance have remained elusive. In the heart, oxidative stress is a major contributor to the development of heart failure (HF). Therefore, we hypothesized that DJ-1 inhibits the pathological consequences of ROS production in the heart, the organ with the highest oxidative burden. We report that DJ-1 is highly expressed in normal heart tissue but is markedly reduced in end-stage human HF. DJ-1-deficient mice subjected to oxidative stress by transaortic banding exhibited exaggerated cardiac hypertrophy and susceptibility to developing HF. This was accompanied by a Trp53 (p53)-dependent decrease in capillary density, an excessive oxidation of DNA, and increased cardiomyocyte apoptosis, key events in the development of HF. Impaired mitochondrial biogenesis and progressive respiratory chain deficiency were also evident in cardiomyocytes lacking DJ-1. Our results provide compelling in vivo evidence that DJ-1 is a unique and nonredundant antioxidant that functions independent of other antioxidative pathways in the cellular defense against ROS.


Asunto(s)
Predisposición Genética a la Enfermedad , Péptidos y Proteínas de Señalización Intracelular/fisiología , Miocardio/metabolismo , Proteínas Oncogénicas/fisiología , Estrés Oxidativo , Angiotensina II/metabolismo , Animales , Antioxidantes/metabolismo , Apoptosis , Regulación hacia Abajo , Ecocardiografía , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Microscopía Fluorescente , Miocitos Cardíacos/citología , Peroxirredoxinas , Proteína Desglicasa DJ-1 , Especies Reactivas de Oxígeno
11.
Proc Natl Acad Sci U S A ; 108(23): 9572-7, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21606348

RESUMEN

Oxidative stress is caused by an imbalance between reactive oxygen species (ROS) production and the ability of an organism to eliminate these toxic intermediates. Mutations in PTEN-inducible kinase 1 (PINK1) link mitochondrial dysfunction, increased sensitivity to ROS, and apoptosis in Parkinson's disease. Whereas PINK1 has been linked to the regulation of oxidative stress, the exact mechanism by which this occurs has remained elusive. Oxidative stress with associated mitochondrial dysfunction leads to cardiac dysfunction and heart failure (HF). We hypothesized that loss of PINK1 in the heart would have deleterious consequences on mitochondrial function. Here, we observed that PINK1 protein levels are markedly reduced in end-stage human HF. We also report that PINK1 localizes exclusively to the mitochondria. PINK1(-/-) mice develop left ventricular dysfunction and evidence of pathological cardiac hypertrophy as early as 2 mo of age. Of note, PINK1(-/-) mice have greater levels of oxidative stress and impaired mitochondrial function. There were also higher degrees of fibrosis, cardiomyocyte apoptosis, and a reciprocal reduction in capillary density associated with this baseline cardiac phenotype. Collectively, our in vivo data demonstrate that PINK1 activity is crucial for postnatal myocardial development, through its role in maintaining mitochondrial function, and redox homeostasis in cardiomyocytes. In conclusion, PINK1 possesses a distinct, nonredundant function in the surveillance and maintenance of cardiac tissue homeostasis.


Asunto(s)
Insuficiencia Cardíaca/enzimología , Miocardio/enzimología , Proteínas Quinasas/metabolismo , Adulto , Animales , Animales Recién Nacidos , Western Blotting , Cardiomegalia/enzimología , Cardiomegalia/genética , Cardiomegalia/patología , Células Cultivadas , Femenino , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Humanos , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Noqueados , Microscopía Fluorescente , Persona de Mediana Edad , Mutación , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Quinasas/genética , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Disfunción Ventricular Izquierda/enzimología , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/patología
12.
Nat Med ; 14(3): 315-24, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18311148

RESUMEN

p27(Kip1) (p27) blocks cell proliferation through the inhibition of cyclin-dependent kinase-2 (Cdk2). Despite its robust expression in the heart, little is known about both the function and regulation of p27 in this and other nonproliferative tissues, in which the expression of its main target, cyclin E-Cdk2, is known to be very low. Here we show that angiotensin II, a major cardiac growth factor, induces the proteasomal degradation of p27 through protein kinase CK2-alpha'-dependent phosphorylation. Conversely, unphosphorylated p27 potently inhibits CK2-alpha'. Thus, the p27-CK2-alpha' interaction is regulated by hypertrophic signaling events and represents a regulatory feedback loop in differentiated cardiomyocytes analogous to, but distinct from, the feedback loop arising from the interaction of p27 with Cdk2 that controls cell proliferation. Our data show that extracellular growth factor signaling regulates p27 stability in postmitotic cells, and that inactivation of p27 by CK2-alpha' is crucial for agonist- and stress-induced cardiac hypertrophic growth.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Miocardio/metabolismo , Envejecimiento , Angiotensina II/farmacología , Animales , Cardiomegalia/genética , Quinasa de la Caseína II/genética , Proliferación Celular , Células Cultivadas , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Humanos , Ratones , Ratones Noqueados , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Unión Proteica , Ratas , Transducción de Señal
13.
J Neurosci ; 27(17): 4562-71, 2007 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-17460069

RESUMEN

The role of glucocorticoids in the regulation of apoptosis remains incongruous. Here, we demonstrate that corticosterone protects neurons from apoptosis by a mechanism involving the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). In primary cortical neurons, corticosterone leads to a dose- and Akt-kinase-dependent upregulation with enhanced phosphorylation and cytoplasmic appearance of p21(Waf1/Cip1) at Thr 145. Exposure of neurons to the neurotoxin ethylcholine aziridinium (AF64A) results in activation of caspase-3 and a dramatic loss of p21(Waf1/Cip1) preceding apoptosis in neurons. These effects of AF64A are reversed by pretreatment with corticosterone. Corticosterone-mediated upregulation of p21(Waf1/Cip1) and neuroprotection are completely abolished by glucocorticoid and mineralocorticoid receptor antagonists as well as inhibitors of PI3- and Akt-kinase. Both germline and somatically induced p21(Waf1/Cip1) deficiency abrogate the neuroprotection by corticosterone, whereas overexpression of p21(Waf1/Cip1) suffices to protect neurons from apoptosis. We identify p21(Waf1/Cip1) as a novel antiapoptotic factor for postmitotic neurons and implicate p21(Waf1/Cip1) as the molecular target of neuroprotection by high-dose glucocorticoids.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Glucocorticoides/farmacología , Neuronas/enzimología , Fármacos Neuroprotectores/farmacología , Transducción de Señal/fisiología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Citoplasma/enzimología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Ratones , Ratones Endogámicos , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiología
14.
Circ Res ; 100(1): 50-60, 2007 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-17158337

RESUMEN

Statins are widely used clinical drugs that exert beneficial growth-suppressive effects in patients with cardiac hypertrophy. We investigated the role of the cell cycle inhibitor p21(CIP1/WAF1) (p21) in statin-dependent inhibition of hypertrophic growth in postmitotic cardiomyocytes. We demonstrate that lovastatin fails to inhibit cardiac hypertrophy to angiotensin II in p21(-/-) mice and that reconstitution of p21 function by TAT.p21 protein transduction can rescue statin action in these otherwise normally developed animals. Lovastatin specifically recruits the forkhead box FoxO3a transcription factor to the p21 promoter, mediating transcriptional transactivation of the p21 gene as analyzed in isolated primary cardiomyocytes. Lovastatin also stimulates protein kinase B/Akt kinase activity, and Akt-dependent phosphorylation forces p21 in the cytoplasm, where it inhibits Rho-kinases contributing to the suppression of cardiomyocyte hypertrophy. Loss of p21 or FoxO3a by RNA interference causes a general inhibition of lovastatin signal transduction. These results suggest that p21 functions as FoxO3a downstream target to mediate an statin-derived anti-hypertrophic response. Taken together, our genetic and biochemical data delineate an essential function of p21 for statin-dependent inhibition of cardiac myocyte hypertrophy.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Factores de Transcripción Forkhead/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Citoplasma/metabolismo , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/antagonistas & inhibidores , Factores de Transcripción Forkhead/efectos de los fármacos , Factores de Transcripción Forkhead/fisiología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hipertrofia/prevención & control , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Lovastatina/antagonistas & inhibidores , Lovastatina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/fisiología , Interferencia de ARN , Ratas , Transcripción Genética/fisiología , Quinasas Asociadas a rho
15.
Methods Mol Biol ; 296: 239-45, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15576936

RESUMEN

The E2F-family of transcripion factors exerts fascinating and contrasting functions in transcriptional repression and activation of genes regulating proliferation, apoptosis, and differentiation. E2F is principally regulated by its temporal association with retinoblastoma pocket protein (pRb) family members. In turn, pRb is regulated through phosphorylation by cyclin-dependent kinase (cdk). The activity of cdk is negatively regulated by cdk-inhibitors, exemplified by p16INK4a, p21CIP1, and p27KIP1. Therefore, positive and negative signaling events converge on E2F activity resulting in distinct growth-controling and apoptotic activities. Here we describe the immunocytochemical detection of E2F, genomic DNA, BrdU-incorporation, and mitosis in cardiomyoctes. A detailed protocol is given to illustrate this technique in primary heart muscle cells.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Ciclo Celular/fisiología , Proteínas de Unión al ADN/fisiología , Proteína de Retinoblastoma/fisiología , Factores de Transcripción/fisiología , Animales , Animales Recién Nacidos , Bromodesoxiuridina , Separación Celular/métodos , Células Cultivadas , Células Inmovilizadas , Factores de Transcripción E2F , Técnica del Anticuerpo Fluorescente Indirecta/métodos , Inmunohistoquímica/métodos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ratas
16.
Mol Cell Biol ; 23(2): 555-65, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12509454

RESUMEN

Cell cycle withdrawal associated with terminal differentiation is responsible for the incapability of many organs to regenerate after injury. Here, we employed a cell-free system to analyze the molecular mechanisms underlying cell cycle arrest in cardiomyocytes. In this assay, incubation of S phase nuclei mixed with cytoplasmic extract of S phase cells and adult primary cardiomyocytes results in a dramatic reduction of proliferating cell nuclear antigen (PCNA) protein levels. This effect was blocked by the proteasome inhibitors MG132 and lactacystin, whereas actinomycin D and cycloheximide had no effect. Immunodepletion and addback experiments revealed that the effect of cardiomyocyte extract on PCNA protein levels is maintained by p21 but not p27. In serum-stimulated cardiomyocytes PCNA expression was reconstituted, whereas the protein level of p21 but not that of p27 was reduced. Cytoplasmic extract of serum-stimulated cardiomyocytes did not influence the PCNA protein level in S phase nuclei. Moreover, the hypertrophic effect of serum stimulation was blocked by ectopic expression of p21 and the PCNA protein level was found to be upregulated in adult cardiomyocytes derived from p21 knockout mice. Our data provide evidence that p21 regulates the PCNA protein level in adult cardiomyocytes, which has implications for cardiomyocyte growth control.


Asunto(s)
Ciclinas/fisiología , Proteínas Musculares , Miocardio/citología , Antígeno Nuclear de Célula en Proliferación/biosíntesis , Adenoviridae/genética , Animales , Diferenciación Celular , División Celular , Núcleo Celular/metabolismo , Sistema Libre de Células , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ciclinas/metabolismo , Cicloheximida/farmacología , Citoplasma/metabolismo , Dactinomicina/farmacología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente Indirecta , Immunoblotting , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Miocardio/metabolismo , Plásmidos/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Fase S , Regulación hacia Arriba
17.
Circ Res ; 91(9): 782-9, 2002 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12411392

RESUMEN

Apoptotic cell death is an important mode of cell loss contributing to heart dysfunction. To analyze the importance of the E2F-dependent regulation of gene transcription in cardiomyocyte apoptosis, the function of cell cycle factors impinging on the retinoblastoma protein (pRb)/E2F pathway was investigated. In isolated neonatal ventricular myocytes, apoptotic cell death induced by hypoxia (deferoxamine, 100 micro mol/L) specifically activated cyclin-dependent kinases (cdks) 2 and 3. Apoptotic cell death was inhibited by ectopic expression of cdk inhibitors p21(CIP) and p27(KIP1) but not p16(INK4). In addition, apoptosis was also abrogated by forced expression of kinase dead mutant proteins of cdk2/3 but not of cdk4/6. Introduction of cdk inhibitors or dominant-negative cdk2/3 blocked pRb hyperphosphorylation and abrogated E2F-dependent gene transcription, including that of the E2F-responsive genes of proapoptotic caspase 3 and caspase 7. Moreover, introduction of constitutively active pRb and transcriptionally inert mutant E2F1/DP1 efficiently protected cardiomyocytes from apoptosis. In conclusion, these data demonstrate that cdk-specific inactivation of pRb and the subsequent activation of E2F-dependent gene transcription are required for cardiomyocyte apoptosis.


Asunto(s)
Apoptosis/fisiología , Hipoxia de la Célula/fisiología , Proteínas de Unión al ADN , Miocardio/metabolismo , Proteína de Retinoblastoma/metabolismo , Transducción de Señal/fisiología , Animales , Animales Recién Nacidos , Caspasas/genética , Caspasas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Factores de Transcripción E2F , Factor de Transcripción E2F1 , Inhibidores Enzimáticos/farmacología , Genes Reporteros , Miocardio/citología , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/fisiología , Ratas , Ratas Wistar , Proteína de Retinoblastoma/genética , Transducción de Señal/efectos de los fármacos , Factor de Transcripción DP1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiología , Transfección , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
18.
Mol Cell Biol ; 22(7): 2147-58, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11884602

RESUMEN

The E2F family of transcription factors comprises six related members which are involved in the control of the coordinated progression through the G(1)/S-phase transition of cell cycle or in cell fate decision. Their activity is regulated by pocket proteins, including pRb, p107, and p130. Here we show that E2F1 directly interacts with the ETS-related transcription factor GABPgamma1 in vitro and in vivo. The binding domain interacting with GABPgamma1 was mapped to the C-terminal amino acids 310 to 437 of E2F1, which include its transactivation and pRb binding domain. Among the E2F family of transcription factors, the interaction with GABPgamma1 is restricted to E2F1. DNA-binding E2F1 complexes containing GABPgamma1 are characterized by enhanced E2F1-dependent transcriptional activity. Moreover, GABPgamma1 suppresses E2F1-dependent apoptosis by mechanisms other than the inhibition of the transactivation capacity of E2F1. In summary, our results provide evidence for a novel pRb-independent mechanism regulating E2F1-dependent transcription and apoptosis.


Asunto(s)
Apoptosis , Proteínas de Ciclo Celular , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Animales , Western Blotting , Línea Celular , Proteínas de Unión al ADN/genética , Factores de Transcripción E2F , Factor de Transcripción E2F1 , Ensayo de Cambio de Movilidad Electroforética , Citometría de Flujo , Factor de Transcripción de la Proteína de Unión a GA , Humanos , Etiquetado Corte-Fin in Situ , Miocardio/citología , Miocardio/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Especificidad por Sustrato , Factores de Transcripción/química , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA