Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mSphere ; 8(5): e0039123, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37747235

RESUMEN

Chlamydia trachomatis is a developmentally regulated, obligate intracellular bacterium that encodes three sigma factors: σ66, σ54, and σ28. σ66 is the major sigma factor controlling most transcription initiation during early- and mid-cycle development as the infectious elementary body (EB) transitions to the non-infectious reticulate body (RB) that replicates within an inclusion inside the cell. The roles of the minor sigma factors, σ54 and σ28, have not been well characterized to date; however, there are data to suggest each functions in late-stage development and secondary differentiation as RBs transition to EBs. As the process of secondary differentiation itself is poorly characterized, clarifying the function of these alternative sigma factors by identifying the genes regulated by them will further our understanding of chlamydial differentiation. We hypothesize that σ54 and σ28 have non-redundant and essential functions for initiating late gene transcription thus mediating secondary differentiation in Chlamydia. Here, we demonstrate the necessity of each minor sigma factor in successfully completing the developmental cycle. We have implemented and validated multiplexed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) interference techniques, novel to the chlamydial field to examine the effects of knocking down each alternative sigma factor individually and simultaneously. In parallel, we also overexpressed each sigma factor. Altering transcript levels for either or both alternative sigma factors resulted in a severe defect in EB production as compared to controls. Furthermore, RNA sequencing identified differentially expressed genes during alternative sigma factor dysregulation, indicating the putative regulons of each. These data demonstrate that the levels of alternative sigma factors must be carefully regulated to facilitate chlamydial growth and differentiation. IMPORTANCE Chlamydia trachomatis is a significant human pathogen in both developed and developing nations. Due to the organism's unique developmental cycle and intracellular niche, basic research has been slow and arduous. However, recent advances in chlamydial genetics have allowed the field to make significant progress in experimentally interrogating the basic physiology of Chlamydia. Broadly speaking, the driving factors of chlamydial development are poorly understood, particularly regarding how the later stages of development are regulated. Here, we employ a novel genetic tool for use in Chlamydia while investigating the effects of dysregulating the two alternative sigma factors in the organism that help control transcription initiation. We provide further evidence for both sigma factors' essential roles in late-stage development and their potential regulons, laying the foundation for deeper experimentation to uncover the molecular pathways involved in chlamydial differentiation.


Asunto(s)
Chlamydia trachomatis , Factor sigma , Humanos , Chlamydia trachomatis/genética , Factor sigma/genética , Factor sigma/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Regulón , Secuencia de Bases
2.
bioRxiv ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37162869

RESUMEN

C. trachomatis is a developmentally regulated, obligate intracellular bacterium that encodes three sigma factors: σ66, σ54, and σ28. σ66 is the major sigma factor controlling most transcription initiation during early and mid-cycle development as the infectious EB transitions to the non-infectious RB that replicates within an inclusion inside the cell. The roles of the minor sigma factors, σ54 and σ28, have not been well characterized to date - however, there are data to suggest each functions in late-stage development and secondary differentiation as RBs transition to EBs. As the process of secondary differentiation itself is poorly characterized, clarifying the function of these alternative sigma factors by identifying the genes regulated by them will further our understanding of chlamydial differentiation. We hypothesize that σ54 and σ28 have non-redundant and essential functions for initiating late gene transcription thus mediating secondary differentiation in Chlamydia . Here, we demonstrate the necessity of each minor sigma factor in successfully completing the developmental cycle. We have implemented and validated multiplexed CRISPRi techniques novel to the chlamydial field to examine effects of knocking down each alternative sigma factor individually and simultaneously. In parallel, we also overexpressed each sigma factor. Altering transcript levels for either or both alternative sigma factors resulted in a severe defect in EB production as compared to controls. Furthermore, RNA sequencing identified differentially expressed genes during alternative sigma factor dysregulation, indicating the putative regulons of each. These data demonstrate the levels of alternative sigma factors must be carefully regulated to facilitate chlamydial growth and differentiation. Importance: Chlamydia trachomatis is a significant human pathogen in both developed and developing nations. Due to the organism's unique developmental cycle and intracellular niche, basic research has been slow and arduous. However, recent advances in chlamydial genetics have allowed the field to make significant progress in experimentally interrogating the basic physiology of Chlamydia . Broadly speaking, the driving factors of chlamydial development are poorly understood, particularly regarding how the later stages of development are regulated. Here, we employ a novel genetic tool for use in Chlamydia while investigating the effects of dysregulating the two alternative sigma factors in the organism that help control transcription initiation. We provide further evidence for both sigma factors' essential roles in late-stage development and their potential regulons, laying the foundation for deeper experimentation to uncover the molecular pathways involved in chlamydial differentiation.

3.
mSystems ; 6(6): e0126921, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34904862

RESUMEN

Chlamydia trachomatis and Streptococcus pyogenes are among the most prevalent bacterial pathogens of humans. Interestingly, both pathogens are tryptophan (Trp) auxotrophs and must acquire this essential amino acid from their environment. For Chlamydia, an obligate intracellular bacterium, this means scavenging Trp from the host cell in which they reside. For Streptococcus, a primarily extracellular bacterium, this means scavenging Trp from the local environment. In the course of a natural immune response, both pathogens can be exposed to Trp-limiting conditions through the action of the interferon gamma-inducible IDO1 enzyme, which catabolizes Trp to N-formylkynurenine. How these pathogens respond to Trp starvation is incompletely understood. However, we have previously demonstrated that genes enriched in Trp codons were preferentially transcribed in C. pneumoniae during Trp limitation. Chlamydia, but not Streptococcus, lacks a stringent response, which is a global regulon activated by uncharged tRNAs binding in the A site of the ribosome. We hypothesized that the chlamydial response to Trp limitation is a consequence of lacking a stringent response. To test this, we compared global transcription profiles of C. trachomatis to both wild-type and stringent response mutant strains of Streptococcus during Trp starvation. We observed that both Trp auxotrophs respond with codon-dependent changes in their transcriptional profiles that correlate with Trp codon content but not transcript stability. Importantly, the stringent response had no impact on these transcriptional changes, suggesting an evolutionarily conserved adaptation to Trp starvation. Therefore, we have revealed a novel response of Trp auxotrophic pathogens in response to Trp starvation. IMPORTANCE Chlamydia trachomatis and Streptococcus pyogenes are important pathogens of humans. Interestingly, both are auxotrophic for tryptophan and acquire this essential amino acid from the host environment. However, part of the host defense against pathogens includes the degradation of tryptophan pools. Therefore, Chlamydia and Streptococcus are particularly susceptible to tryptophan starvation. Most model bacteria respond to amino acid starvation by using a global regulon called the stringent response. However, Chlamydia lacks a stringent response. Here, we investigated the chlamydial response to tryptophan starvation and compared it to both wild-type and stringent response mutant strains of S. pyogenes to determine what role a functional stringent response plays during tryptophan starvation in these pathogens. We determined that both of these pathogens respond to tryptophan starvation by increasing transcription of tryptophan codon-rich genes. This effect was not dependent on the stringent response and highlights a previously unrecognized and potentially evolutionarily conserved mechanism for surviving tryptophan starvation.

4.
Infect Immun ; 89(7): e0010821, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33875479

RESUMEN

The ability to inducibly repress gene expression is critical to the study of organisms, like Chlamydia, with reduced genomes in which the majority of genes are likely to be essential. We recently described the feasibility of a CRISPR interference (CRISPRi) system to inducibly repress gene expression in Chlamydia trachomatis. However, the initial system suffered from some drawbacks, primarily leaky expression of the anhydrotetracycline (aTc)-inducible dCas9 ortholog and plasmid instability, which prevented population-wide studies (e.g., transcript analyses) of the effects of knockdown. Here, we describe various modifications to the original system that have allowed us to measure gene expression changes within a transformed population of C. trachomatis serovar L2. These modifications include (i) a change in the vector backbone, (ii) the introduction of a weaker ribosome binding site driving dCas9 translation, and (iii) the addition of a degradation tag to dCas9 itself. With these changes, we demonstrate the ability to inducibly repress a target gene sequence, as measured by the absence of protein by immunofluorescence analysis and by decreased transcript levels. Importantly, the expression of dCas9 alone (i.e., without a guide RNA [gRNA]) had minimal impact on chlamydial growth or development. We also describe complementation of the knockdown effect by introducing a transcriptional fusion of the target gene 3' to dCas9. Finally, we demonstrate the functionality of a second CRISPRi system based on a dCas12 system that expands the number of potential chromosomal targets. These tools should provide the ability to study essential gene function in Chlamydia.


Asunto(s)
Sistemas CRISPR-Cas , Chlamydia trachomatis/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Regulación Bacteriana de la Expresión Génica , Sitios de Unión , Infecciones por Chlamydia/microbiología , Marcación de Gen , Plásmidos/genética , ARN Guía de Kinetoplastida , Ribosomas/metabolismo
5.
Nat Commun ; 11(1): 6430, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33353937

RESUMEN

The trp operon of Chlamydia trachomatis is organized differently from other model bacteria. It contains trpR, an intergenic region (IGR), and the biosynthetic trpB and trpA open-reading frames. TrpR is a tryptophan-dependent repressor that regulates the major promoter (PtrpR), while the IGR harbors an alternative promoter (PtrpBA) and an operator sequence for the iron-dependent repressor YtgR to regulate trpBA expression. Here, we report that YtgR repression at PtrpBA is also dependent on tryptophan by regulating YtgR levels through a rare triple-tryptophan motif (WWW) in the YtgCR precursor. Inhibiting translation during tryptophan limitation at the WWW motif subsequently promotes Rho-independent transcription termination of ytgR, thereby de-repressing PtrpBA. Thus, YtgR represents an alternative strategy to attenuate trpBA expression, expanding the repertoire for trp operon attenuation beyond TrpL- and TRAP-mediated mechanisms described in other bacteria. Furthermore, repurposing the iron-dependent repressor YtgR underscores the fundamental importance of maintaining tryptophan-dependent attenuation of the trpRBA operon.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/genética , Hierro/metabolismo , Operón/genética , Triptófano/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Chlamydia trachomatis/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Indoles/farmacología , Modelos Biológicos , Regiones Promotoras Genéticas , Biosíntesis de Proteínas/efectos de los fármacos , Dominios Proteicos , ARN de Transferencia de Triptófano/metabolismo , Transcripción Genética/efectos de los fármacos , Proteínas de Unión al GTP rho/metabolismo
6.
Infect Immun ; 88(4)2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-31964747

RESUMEN

Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections, and Chlamydia pneumoniae causes community-acquired respiratory infections. In vivo, the host immune system will release gamma interferon (IFN-γ) to combat infection. IFN-γ activates human cells to produce the tryptophan (Trp)-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO). Consequently, there is a reduction in cytosolic Trp in IFN-γ-activated host cells. In evolving to obligate intracellular dependence, Chlamydia has significantly reduced its genome size and content, as it relies on the host cell for various nutrients. Importantly, C. trachomatis and C. pneumoniae are Trp auxotrophs and are starved for this essential nutrient when the human host cell is exposed to IFN-γ. To survive this, chlamydiae enter an alternative developmental state referred to as persistence. Chlamydial persistence is characterized by a halt in the division cycle, aberrant morphology, and, in the case of IFN-γ-induced persistence, Trp codon-dependent changes in transcription. We hypothesize that these changes in transcription are dependent on the particular amino acid starvation state. To investigate the chlamydial response mechanisms acting when other amino acids become limiting, we tested the efficacy of prokaryote-specific tRNA synthetase inhibitors, indolmycin and AN3365, to mimic starvation of Trp and leucine, respectively. We show that these drugs block chlamydial growth and induce changes in morphology and transcription consistent with persistence. Importantly, growth inhibition was reversed when the compounds were removed from the medium. With these data, we find that indolmycin and AN3365 are valid tools that can be used to mimic the persistent state independently of IFN-γ.


Asunto(s)
Adaptación Fisiológica , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/crecimiento & desarrollo , Chlamydophila pneumoniae/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Triptófano/metabolismo , Línea Celular , Chlamydia trachomatis/citología , Chlamydia trachomatis/efectos de los fármacos , Chlamydia trachomatis/enzimología , Chlamydophila pneumoniae/citología , Chlamydophila pneumoniae/efectos de los fármacos , Chlamydophila pneumoniae/enzimología , Inhibidores Enzimáticos/metabolismo , Interacciones Huésped-Patógeno , Humanos , Indoles/metabolismo , Leucina/metabolismo , Modelos Biológicos , Transcripción Genética
7.
Leuk Lymphoma ; 60(5): 1214-1223, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30424705

RESUMEN

Mantle cell lymphoma (MCL) represents an aggressive B-cell lymphoma with frequent relapse and poor survival. Recently, dysregulated histone-deacetylases (HDACs) and cell cycle CDK-Rb pathway have been shown to be commonly associated with MCL pathogenesis, and are considered promising targets for relapsed-lymphoma therapy. Therefore, we investigated the single agents and combination efficacy of HDACs inhibitor Vorinostat, CDK4/6 dual-inhibitor Palbociclib on MCL cell growth/survival and underlying molecular mechanism(s) using MCL cell lines including therapy-resistant MCL cell lines. Our results showed that both inhibitors as single agents or combined, significantly suppressed the cell growth and induced apoptosis in therapy-resistant and parental MCL lines. In addition, the combination of Vorinostat and Palbociclib significantly inhibited the activation of the key molecules of the CDK4/6-Rb pathway and HDAC activity and subsequently decreased the expression of Cyclin-D1 and Bcl-2. These studies demonstrated the potential for combining these two inhibitors as a novel therapeutic approach in refractory MCL therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resistencia a Antineoplásicos , Linfoma de Células del Manto/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Linfoma de Células del Manto/patología , Piperazinas/administración & dosificación , Piridinas/administración & dosificación , Vorinostat/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA