Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38659903

RESUMEN

In eukaryotic cells, transcription, translation, and mRNA degradation occur in distinct subcellular regions. How these mRNA processes are organized in bacteria, without employing membrane-bound compartments, remains unclear. Here, we present generalizable principles underlying coordination between these processes in bacteria. In Escherichia coli, we found that co-transcriptional degradation is rare for mRNAs except for those encoding inner membrane proteins, due to membrane localization of the main ribonuclease, RNase E. We further found, by varying ribosome binding sequences, that translation affects mRNA stability not because ribosomes protect mRNA from degradation, but because low translation leads to premature transcription termination in the absence of transcription-translation coupling. Extending our analyses to Bacillus subtilis and Caulobacter crescentus, we established subcellular localization of RNase E (or its homolog) and premature transcription termination in the absence of transcription-translation coupling as key determinants that explain differences in transcriptional and translational coupling to mRNA degradation across genes and species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA