Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 9(27): e2202306, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35908811

RESUMEN

Recording from the human brain at the spatiotemporal resolution of action potentials provides critical insight into mechanisms of higher cognitive functions and neuropsychiatric disease that is challenging to derive from animal models. Here, organic materials and conformable electronics are employed to create an integrated neural interface device compatible with minimally invasive neurosurgical procedures and geared toward chronic implantation on the surface of the human brain. Data generated with these devices enable identification and characterization of individual, spatially distribute human cortical neurons in the absence of any tissue penetration (n = 229 single units). Putative single-units are effectively clustered, and found to possess features characteristic of pyramidal cells and interneurons, as well as identifiable microcircuit interactions. Human neurons exhibit consistent phase modulation by oscillatory activity and a variety of population coupling responses. The parameters are furthermore established to optimize the yield and quality of single-unit activity from the cortical surface, enhancing the ability to investigate human neural network mechanisms without breaching the tissue interface and increasing the information that can be safely derived from neurophysiological monitoring.


Asunto(s)
Neuronas , Células Piramidales , Potenciales de Acción/fisiología , Animales , Encéfalo , Humanos , Interneuronas , Neuronas/fisiología
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 7080-7083, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31947468

RESUMEN

An efficient and reliable method to detect drowsiness can reduce accidents and injuries related to drowsy driving. However, existing systems for detecting drowsiness are often of low-resolution, expensive, and dependent on external parameters. Therefore, the goal of this study is to develop a high-resolution and efficient drowsiness detection algorithm using relatively less noisy sleep study data. To this end, we recorded electroencephalogram (EEG) from 53 subjects during a sleep study and leveraged the EEG frequency band changes at sleep onset to develop a model for drowsiness detection. The model devised herein provided a likelihood of wakefulness for 3-s signal segments. By choosing appropriate thresholds of the model output, we have identified three clusters that represent wakefulness, drowsiness, and, sleep. The proposed scheme has been validated using arousals which are cases of alertness and deep sleep segments, cluster quality evaluation metrics, graphical, and statistical analyses. The results presented in this work suggest that spectral properties of EEG can be utilized for high-resolution drowsiness detection in sleep study. Upon its successful validation in a driving study, the proposed model can lead to the development of an efficient drowsy driving monitoring system.


Asunto(s)
Vigilia , Conducción de Automóvil , Electroencefalografía , Humanos , Probabilidad , Fases del Sueño
3.
Comput Biol Med ; 102: 211-220, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30170769

RESUMEN

Sleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of sleep stages using Electrooculogram (EOG) is presented. Single channel EOG signals are analyzed in Discrete Wavelet Transform (DWT) domain employing various statistical features such as Spectral Entropy, Moment-based Measures, Refined Composite Multiscale Dispersion Entropy (RCMDE) and Autoregressive (AR) Model Coefficients. The discriminating ability of the features is studied using the One Way Analysis of Variance (ANOVA) and box plots. A feature reduction algorithm based on Neighborhood Component Analysis is used to reduce the model complexity and select the features with highest discriminating abilities. Random Under-Sampling Boosting (RUSBoost), Random Forest (RF) and Support Vector Machine (SVM) are employed to classify various sleep stages for 2-6 stage classification problem. Performance of the proposed method is studied using three publicly available databases, the Sleep-EDF, Sleep-EDFX and ISRUC-Sleep databases consisting of 8, 20 and 10 subjects respectively. The proposed method outperforms the state-of-the-art EOG based techniques in accuracy. In addition, its performance is shown to be on par or better than those of various single channel EEG based methods. An important limitation of existing sleep detection methods is the low accuracy of the S1 sleep stage classification for which the proposed method using the RUSBoost classifier gives a superior accuracy as compared to those of EOG and EEG based techniques.


Asunto(s)
Electrooculografía/métodos , Polisomnografía/métodos , Procesamiento de Señales Asistido por Computador , Fases del Sueño , Adulto , Algoritmos , Electroencefalografía/métodos , Entropía , Femenino , Humanos , Aprendizaje Automático , Masculino , Modelos Estadísticos , Análisis de Regresión , Máquina de Vectores de Soporte , Análisis de Ondículas , Adulto Joven
4.
Comput Methods Programs Biomed ; 140: 201-210, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28254077

RESUMEN

BACKGROUND AND OBJECTIVE: Automatic sleep staging is essential for alleviating the burden of the physicians of analyzing a large volume of data by visual inspection. It is also a precondition for making an automated sleep monitoring system feasible. Further, computerized sleep scoring will expedite large-scale data analysis in sleep research. Nevertheless, most of the existing works on sleep staging are either multichannel or multiple physiological signal based which are uncomfortable for the user and hinder the feasibility of an in-home sleep monitoring device. So, a successful and reliable computer-assisted sleep staging scheme is yet to emerge. METHODS: In this work, we propose a single channel EEG based algorithm for computerized sleep scoring. In the proposed algorithm, we decompose EEG signal segments using Ensemble Empirical Mode Decomposition (EEMD) and extract various statistical moment based features. The effectiveness of EEMD and statistical features are investigated. Statistical analysis is performed for feature selection. A newly proposed classification technique, namely - Random under sampling boosting (RUSBoost) is introduced for sleep stage classification. This is the first implementation of EEMD in conjunction with RUSBoost to the best of the authors' knowledge. The proposed feature extraction scheme's performance is investigated for various choices of classification models. The algorithmic performance of our scheme is evaluated against contemporary works in the literature. RESULTS: The performance of the proposed method is comparable or better than that of the state-of-the-art ones. The proposed algorithm gives 88.07%, 83.49%, 92.66%, 94.23%, and 98.15% for 6-state to 2-state classification of sleep stages on Sleep-EDF database. Our experimental outcomes reveal that RUSBoost outperforms other classification models for the feature extraction framework presented in this work. Besides, the algorithm proposed in this work demonstrates high detection accuracy for the sleep states S1 and REM. CONCLUSION: Statistical moment based features in the EEMD domain distinguish the sleep states successfully and efficaciously. The automated sleep scoring scheme propounded herein can eradicate the onus of the clinicians, contribute to the device implementation of a sleep monitoring system, and benefit sleep research.


Asunto(s)
Automatización , Electroencefalografía/métodos , Fases del Sueño/fisiología , Adulto , Anciano , Investigación Empírica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
5.
Comput Methods Programs Biomed ; 136: 65-77, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27686704

RESUMEN

BACKGROUND AND OBJECTIVE: Computerized epileptic seizure detection is essential for expediting epilepsy diagnosis and research and for assisting medical professionals. Moreover, the implementation of an epilepsy monitoring device that has low power and is portable requires a reliable and successful seizure detection scheme. In this work, the problem of automated epilepsy seizure detection using singe-channel EEG signals has been addressed. METHODS: At first, segments of EEG signals are decomposed using a newly proposed signal processing scheme, namely complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). Six spectral moments are extracted from the CEEMDAN mode functions and train and test matrices are formed afterward. These matrices are fed into the classifier to identify epileptic seizures from EEG signal segments. In this work, we implement an ensemble learning based machine learning algorithm, namely linear programming boosting (LPBoost) to perform classification. RESULTS: The efficacy of spectral features in the CEEMDAN domain is validated by graphical and statistical analyses. The performance of CEEMDAN is compared to those of its predecessors to further inspect its suitability. The effectiveness and the appropriateness of LPBoost are demonstrated as opposed to the commonly used classification models. Resubstitution and 10 fold cross-validation error analyses confirm the superior algorithm performance of the proposed scheme. The algorithmic performance of our epilepsy seizure identification scheme is also evaluated against state-of-the-art works in the literature. Experimental outcomes manifest that the proposed seizure detection scheme performs better than the existing works in terms of accuracy, sensitivity, specificity, and Cohen's Kappa coefficient. CONCLUSION: It can be anticipated that owing to its use of only one channel of EEG signal, the proposed method will be suitable for device implementation, eliminate the onus of clinicians for analyzing a large bulk of data manually, and expedite epilepsy diagnosis.


Asunto(s)
Electroencefalografía/métodos , Convulsiones/diagnóstico , Humanos , Convulsiones/fisiopatología
6.
J Neurosci Methods ; 271: 107-18, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27456762

RESUMEN

BACKGROUND: Automatic sleep scoring is essential owing to the fact that conventionally a large volume of data have to be analyzed visually by the physicians which is onerous, time-consuming and error-prone. Therefore, there is a dire need of an automated sleep staging scheme. NEW METHOD: In this work, we decompose sleep-EEG signal segments using tunable-Q factor wavelet transform (TQWT). Various spectral features are then computed from TQWT sub-bands. The performance of spectral features in the TQWT domain has been determined by intuitive and graphical analyses, statistical validation, and Fisher criteria. Random forest is used to perform classification. Optimal choices and the effects of TQWT and random forest parameters have been determined and expounded. RESULTS: Experimental outcomes manifest the efficacy of our feature generation scheme in terms of p-values of ANOVA analysis and Fisher criteria. The proposed scheme yields 90.38%, 91.50%, 92.11%, 94.80%, 97.50% for 6-stage to 2-stage classification of sleep states on the benchmark Sleep-EDF data-set. In addition, its performance on DREAMS Subjects Data-set is also promising. COMPARISON WITH EXISTING METHODS: The performance of the proposed method is significantly better than the existing ones in terms of accuracy and Cohen's kappa coefficient. Additionally, the proposed scheme gives high detection accuracy for sleep stages non-REM 1 and REM. CONCLUSIONS: Spectral features in the TQWT domain can discriminate sleep-EEG signals corresponding to various sleep states efficaciously. The proposed scheme will alleviate the burden of the physicians, speed-up sleep disorder diagnosis, and expedite sleep research.


Asunto(s)
Algoritmos , Técnicas de Apoyo para la Decisión , Electroencefalografía/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Fases del Sueño , Análisis de Ondículas , Adulto , Anciano , Análisis de Varianza , Encéfalo/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fases del Sueño/fisiología , Trastornos del Sueño-Vigilia/diagnóstico , Trastornos del Sueño-Vigilia/fisiopatología , Adulto Joven
7.
Comput Methods Programs Biomed ; 137: 247-259, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28110729

RESUMEN

BACKGROUND AND OBJECTIVE: Epileptic seizure detection is traditionally performed by expert clinicians based on visual observation of EEG signals. This process is time-consuming, burdensome, reliant on expensive human resources, and subject to error and bias. In epilepsy research, on the other hand, manual detection is unsuitable for handling large data-sets. A computerized seizure identification scheme can eradicate the aforementioned problems, aid clinicians, and benefit epilepsy research. METHODS: In this work, a new automated epilepsy diagnosis scheme based on Tunable-Q factor wavelet transform (TQWT) and bootstrap aggregating (Bagging) using Electroencephalogram (EEG) signals is proposed. Until now, this is the first time spectral features in the TQWT domain in conjunction with Bagging are employed for epilepsy seizure identification to the best of the authors' knowledge. At first, we decompose the EEG signal segments into sub-bands using TQWT. We then extract various spectral features from the TQWT sub-bands. The suitability of spectral features in the TQWT domain is established through statistical measures and graphical analyses. Afterwards, Bagging is employed for epileptic seizure classification. The efficacy of Bagging in the proposed detection scheme is also studied in this research. The effects of various TQWT and Bagging parameters are investigated. The optimal choices of these parameters are also determined. The performance of the proposed scheme is studied using a publicly available benchmark EEG database for various classification cases that include inter-ictal (seizure-free interval), ictal (seizure) and healthy; seizure and non-seizure; ictal and inter-ictal; and seizure and healthy. RESULTS: In comparison with the state-of-the-art algorithms, the performance of the proposed method is superior in terms of sensitivity, specificity, and accuracy. CONCLUSION: The seizure detection method proposed herein therefore can alleviate the burden of medical professionals of analyzing a large bulk of data by visual inspection, speed-up epilepsy diagnosis and benefit epilepsy research.


Asunto(s)
Electroencefalografía , Epilepsia/diagnóstico por imagen , Humanos , Análisis de Ondículas
8.
Comput Methods Programs Biomed ; 122(3): 341-53, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26390947

RESUMEN

BACKGROUND AND OBJECTIVE: Wireless Capsule Endoscopy (WCE) can image the portions of the human gastrointestinal tract that were previously unreachable for conventional endoscopy examinations. A major drawback of this technology is that a large volume of data are to be analyzed in order to detect a disease which can be time-consuming and burdensome for the clinicians. Consequently, there is a dire need of computer-aided disease detection schemes to assist the clinicians. In this paper, we propose a real-time, computationally efficient and effective computerized bleeding detection technique applicable for WCE technology. METHODS: The development of our proposed technique is based on the observation that characteristic patterns appear in the frequency spectrum of the WCE frames due to the presence of bleeding region. Discovering these discriminating patterns, we develop a texture-feature-descriptor-based-algorithm that operates on the Normalized Gray Level Co-occurrence Matrix (NGLCM) of the magnitude spectrum of the images. A new local texture descriptor called difference average that operates on NGLCM is also proposed. We also perform statistical validation of the proposed scheme. RESULTS: The proposed algorithm was evaluated using a publicly available WCE database. The training set consisted of 600 bleeding and 600 non-bleeding frames. This set was used to train the SVM classifier. On the other hand, 860 bleeding and 860 non-bleeding images were selected from the rest of the extracted images to form the test set. The accuracy, sensitivity and specificity obtained from our method are 99.19%, 99.41% and 98.95% respectively which are significantly higher than state-of-the-art methods. In addition, the low computational cost of our method makes it suitable for real-time implementation. CONCLUSION: This work proposes a bleeding detection algorithm that employs textural features from the magnitude spectrum of the WCE images. Experimental outcomes backed by statistical validations prove that the proposed algorithm is superior to the existing ones in terms of accuracy, sensitivity, specificity and computational cost.


Asunto(s)
Endoscopía Capsular/métodos , Hemorragia Gastrointestinal/diagnóstico , Tecnología Inalámbrica , Algoritmos , Humanos , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA