Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2549, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38291194

RESUMEN

CKD is a byproduct of the cement industry, and its accumulation in the surrounding represents one of many issues associated with this industry. In this study, CKD was utilized in the fabrication of one-mix geopolymer cement (GP) composite as an economical and environmental solution for disposal of this byproduct. The mechanical properties and durability behavior during various deterioration actions were inspected. The obtained findings demonstrated that, replacing slag by CKD in the fabricated GP could cause an elongation in the setting times and reduction in the compression strength of approximately 50%. However, GPs containing CKD offered an accepted resistance to irradiation by γ-rays and to firing action. Reinforcing the GPs with nano Fe3O4 (NF) or nano TiO2 (NT) accelerated the geopolymerization reaction and offered mechanical properties surprising the control mix, this was related to the micro-filling and catalytic actions of the NPs which supported the formation of symmetrical and organized clusters of CSHs and CASH gel as shown in SEM micrographs. The reinforcing mixes surpassing the control mix in the protection against intrusion of sulfate ions which they could retain about 92% of their strength after 4 months of exposure while the control mix retained 80%. Furthermore, they showed a superior resistance to the destructive effect of irradiation by high dose gamma rays up to 1500 kGy and they retained ~ 75% of their strength after irradiation while the control mix was kept at only 35%. The fabricated composites are recommended for usage in many applied construction fields.

2.
ACS Appl Bio Mater ; 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36040424

RESUMEN

We synthesized a stable, eco-friendly, and low-cost polyaniline@ß-cyclodextrin (PANI@ß-CD) nanocomposite via oxidative polymerization for phenol adsorption from water waste since phenol pollution is a global danger to human and animal health and the environment. The production of the composite and synergistic alteration of PANI with ß-CD resulted in 66% reduction in particle size from 59 nm (PANI) to 20 nm (PANI@ß-CD) as well as better phenol adsorption. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and thermogravimetric analysis (TGA) were used to analyze the produced PANI@ß-CD nanocomposite. Our results show the optimum conditions for phenol adsorption: time (50 min), pH (8.0), nanosorbent dose (0.5 g), and the sorption isotherm fitted with Langmuir model; the monolayer adsorption capacity of the prepared PANI@ß-CD for phenol was determined to be 8.56 mg g-1. The average pore size, total pore volume, and surface area of PANI/ßCD nanocomposite are 15.62 nm, 0.1586 cm3/g, and 90.901 m2/g, respectively, for the pseudo second order model. Finally, modifying PANI nanoparticles with ßCD allowed reusability up to four cycles with superior adsorption performance of ∼95% using (0.01 N) HNO3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA