Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(7): e0299686, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39058678

RESUMEN

Transpiration efficiency (TE), the biomass produced per unit of water transpired, is a key trait for crop performance under limited water. As water becomes scarce, increasing TE would contribute to increase crop drought tolerance. This study is a first step to explore pearl millet genotypic variability for TE on a large and representative diversity panel. We analyzed TE on 537 pearl millet genotypes, including inbred lines, test-cross hybrids, and hybrids bred for different agroecological zones. Three lysimeter trials were conducted in 2012, 2013 and 2015, to assess TE both under well-watered and terminal-water stress conditions. We recorded grain yield to assess its relationship with TE. Up to two-fold variation for TE was observed over the accessions used. Mean TE varied between inbred and testcross hybrids, across years and was slightly higher under water stress. TE also differed among hybrids developed for three agroecological zones, being higher in hybrids bred for the wetter zone, underlining the importance of selecting germplasm according to the target area. Environmental conditions triggered large Genotype x Environment (GxE) interactions, although TE showed some high heritability. Transpiration efficiency was the second contributor to grain yield after harvest index, highlighting the importance of integrating it into pearl millet breeding programs. Future research on TE in pearl millet should focus (i) on investigating the causes of its plasticity i.e. the GxE interaction (ii) on studying its genetic basis and its association with other important physiological traits.


Asunto(s)
Genotipo , Pennisetum , Transpiración de Plantas , Pennisetum/genética , Pennisetum/fisiología , Pennisetum/crecimiento & desarrollo , Transpiración de Plantas/fisiología , Sequías , Agua/metabolismo , Biomasa , Fitomejoramiento/métodos , Variación Genética
2.
PLoS One ; 14(8): e0218916, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31461465

RESUMEN

Pearl millet is an important crop for arid and semi-arid regions of the world. Genomic regions associated with combining ability for yield-related traits under irrigated and drought conditions are useful in heterosis breeding programs. Chromosome segment substitution lines (CSSLs) are excellent genetic resources for precise QTL mapping and identifying naturally occurring favorable alleles. In the present study, testcross hybrid populations of 85 CSSLs were evaluated for 15 grain and stover yield-related traits for summer and wet seasons under irrigated control (CN) and moisture stress (MS) conditions. General combining ability (GCA) and specific combining ability (SCA) effects of all these traits were estimated and significant marker loci linked to GCA and SCA of the traits were identified. Heritability of the traits ranged from 53-94% in CN and 63-94% in MS. A total of 40 significant GCA loci and 36 significant SCA loci were identified for 14 different traits. Five QTLs (flowering time, panicle number and panicle yield linked to Xpsmp716 on LG4, flowering time and grain number per panicle with Xpsmp2076 on LG4) simultaneously controlled both GCA and SCA, demonstrating their unique genetic basis and usefulness for hybrid breeding programs. This study for the first time demonstrated the potential of a set of CSSLs for trait mapping in pearl millet. The novel combining ability loci linked with GCA and SCA values of the traits identified in this study may be useful in pearl millet hybrid and population improvement programs using marker-assisted selection (MAS).


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Ambiente , Sitios Genéticos/genética , Pennisetum/genética , Pennisetum/crecimiento & desarrollo
3.
ScientificWorldJournal ; 2014: 562327, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24526909

RESUMEN

Pearl millet is a staple food crop for millions of people living in the arid and semi-arid tropics. Molecular markers have been used to identify genomic regions linked to traits of interest by conventional QTL mapping and association analysis. Phenotypic recurrent selection is known to increase frequencies of favorable alleles and decrease those unfavorable for the traits under selection. This study was undertaken (i) to quantify the response to recurrent selection for phenotypic traits during breeding of the pearl millet open-pollinated cultivar "CO (Cu) 9" and its four immediate progenitor populations and (ii) to assess the ability of simple sequence repeat (SSR) marker alleles to identify genomic regions linked to grain and stover yield-related traits in these populations by association analysis. A total of 159 SSR alleles were detected across 34 selected single-copy SSR loci. SSR marker data revealed presence of subpopulations. Association analysis identified genomic regions associated with flowering time located on linkage group (LG) 6 and plant height on LG4, LG6, and LG7. Marker alleles on LG6 were associated with stover yield, and those on LG7 were associated with grain yield. Findings of this study would give an opportunity to develop marker-assisted recurrent selection (MARS) or marker-assisted population improvement (MAPI) strategies to increase the rate of gain for pearl millet populations undergoing recurrent selection.


Asunto(s)
Repeticiones de Microsatélite , Pennisetum/genética , Pennisetum/metabolismo , Fenotipo , Carácter Cuantitativo Heredable , Alelos , Evolución Molecular , Estudios de Asociación Genética , Variación Genética , Genotipo , Sitios de Carácter Cuantitativo
4.
BMC Genomics ; 14: 159, 2013 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-23497368

RESUMEN

BACKGROUND: Pearl millet [Pennisetum glaucum (L.) R. Br.] is a widely cultivated drought- and high-temperature tolerant C4 cereal grown under dryland, rainfed and irrigated conditions in drought-prone regions of the tropics and sub-tropics of Africa, South Asia and the Americas. It is considered an orphan crop with relatively few genomic and genetic resources. This study was undertaken to increase the EST-based microsatellite marker and genetic resources for this crop to facilitate marker-assisted breeding. RESULTS: Newly developed EST-SSR markers (99), along with previously mapped EST-SSR (17), genomic SSR (53) and STS (2) markers, were used to construct linkage maps of four F7 recombinant inbred populations (RIP) based on crosses ICMB 841-P3 × 863B-P2 (RIP A), H 77/833-2 × PRLT 2/89-33 (RIP B), 81B-P6 × ICMP 451-P8 (RIP C) and PT 732B-P2 × P1449-2-P1 (RIP D). Mapped loci numbers were greatest for RIP A (104), followed by RIP B (78), RIP C (64) and RIP D (59). Total map lengths (Haldane) were 615 cM, 690 cM, 428 cM and 276 cM, respectively. A total of 176 loci detected by 171 primer pairs were mapped among the four crosses. A consensus map of 174 loci (899 cM) detected by 169 primer pairs was constructed using MergeMap to integrate the individual linkage maps. Locus order in the consensus map was well conserved for nearly all linkage groups. Eighty-nine EST-SSR marker loci from this consensus map had significant BLAST hits (top hits with e-value ≤ 1E-10) on the genome sequences of rice, foxtail millet, sorghum, maize and Brachypodium with 35, 88, 58, 48 and 38 loci, respectively. CONCLUSION: The consensus map developed in the present study contains the largest set of mapped SSRs reported to date for pearl millet, and represents a major consolidation of existing pearl millet genetic mapping information. This study increased numbers of mapped pearl millet SSR markers by >50%, filling important gaps in previously published SSR-based linkage maps for this species and will greatly facilitate SSR-based QTL mapping and applied marker-assisted selection programs.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas , Etiquetas de Secuencia Expresada , Pennisetum/genética , Cruzamiento , Sequías , Repeticiones de Microsatélite/genética , Pennisetum/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Sintenía/genética
5.
BMC Plant Biol ; 12: 9, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22251627

RESUMEN

BACKGROUND: Identification of genes underlying drought tolerance (DT) quantitative trait loci (QTLs) will facilitate understanding of molecular mechanisms of drought tolerance, and also will accelerate genetic improvement of pearl millet through marker-assisted selection. We report a map based on genes with assigned functional roles in plant adaptation to drought and other abiotic stresses and demonstrate its use in identifying candidate genes underlying a major DT-QTL. RESULTS: Seventy five single nucleotide polymorphism (SNP) and conserved intron spanning primer (CISP) markers were developed from available expressed sequence tags (ESTs) using four genotypes, H 77/833-2, PRLT 2/89-33, ICMR 01029 and ICMR 01004, representing parents of two mapping populations. A total of 228 SNPs were obtained from 30.5 kb sequenced region resulting in a SNP frequency of 1/134 bp. The positions of major pearl millet linkage group (LG) 2 DT-QTLs (reported from crosses H 77/833-2 × PRLT 2/89-33 and 841B × 863B) were added to the present consensus function map which identified 18 genes, coding for PSI reaction center subunit III, PHYC, actin, alanine glyoxylate aminotransferase, uridylate kinase, acyl-CoA oxidase, dipeptidyl peptidase IV, MADS-box, serine/threonine protein kinase, ubiquitin conjugating enzyme, zinc finger C- × 8-C × 5-C × 3-H type, Hd3, acetyl CoA carboxylase, chlorophyll a/b binding protein, photolyase, protein phosphatase1 regulatory subunit SDS22 and two hypothetical proteins, co-mapping in this DT-QTL interval. Many of these candidate genes were found to have significant association with QTLs of grain yield, flowering time and leaf rolling under drought stress conditions. CONCLUSIONS: We have exploited available pearl millet EST sequences to generate a mapped resource of seventy five new gene-based markers for pearl millet and demonstrated its use in identifying candidate genes underlying a major DT-QTL in this species. The reported gene-based markers represent an important resource for identification of candidate genes for other mapped abiotic stress QTLs in pearl millet. They also provide a resource for initiating association studies using candidate genes and also for comparing the structure and function of distantly related plant genomes such as other Poaceae members.


Asunto(s)
Mapeo Cromosómico , Sequías , Pennisetum/genética , Sitios de Carácter Cuantitativo , ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Frecuencia de los Genes , Marcadores Genéticos , Genotipo , Pennisetum/fisiología , Polimorfismo de Nucleótido Simple , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA