Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Talanta ; 181: 440-447, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29426538

RESUMEN

In this work a feasible method for chloride and sulfate determination in calcium carbonate pharmaceutical raw material and commercial tablets by ion chromatography after microwave-induced combustion was developed. The analytes were released from matrix by combustion in closed system pressurized with oxygen. Starch as volatilization aid, 100mmolL-1 HNO3 as absorbing solution and 5min of microwave irradiation time were used. Recovery tests using standard solutions were performed for the accuracy evaluation. A mixture of calcium carbonate pharmaceutical raw material or commercial tablets, starch and a certified reference material was also used as a type of recovery test. Recoveries ranging from 88% to 103% were obtained in both spike tests. Limits of detection (Cl-: 40µgg-1 and SO42-: 140µgg-1) were up to eighteen times lower than the maximum limits established for the analytes by Brazilian, British, European and Indian Pharmacopoeias. The limit tests recommended by the European Pharmacopoeia for Cl- and SO42- in CaCO3 were carried out to compare the results. Chloride and SO42- concentrations in the samples analyzed by proposed method were in agreement with those results obtained using the tests recommended by the European Pharmacopoeia. However, the proposed method presents several advantages for the routine analysis when compared to pharmacopoeial methods, such as the quantitative simultaneous determination, high sample preparation throughput (up to eight samples per run in less than 30min), reduced volume of reagents and waste generation. Thus, the proposed method is indicated as an excellent alternative for Cl- and SO42- determination in CaCO3 pharmaceutical raw material and commercial tablets.


Asunto(s)
Carbonato de Calcio/química , Cloruros/análisis , Sulfatos/análisis , Comprimidos/química , Métodos Analíticos de la Preparación de la Muestra/instrumentación , Métodos Analíticos de la Preparación de la Muestra/métodos , Contaminación de Medicamentos/prevención & control , Microondas , Preparaciones Farmacéuticas/química , Reproducibilidad de los Resultados , Volatilización
2.
Food Chem ; 246: 422-427, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29291868

RESUMEN

An eco-friendly method for indirect determining phosphorus and sulfur in animal feed by ion chromatography was proposed. Using this method, it was possible to digest 500 mg of animal feed in a microwave system under oxygen pressure (20 bar) using only a diluted acid solution (2 mol L-1 HNO3). The accuracy of the proposed method was evaluated by recovery tests, by analysis of reference material (RM) and by comparison of the results with those obtained using conventional microwave-assisted digestion. Moreover, P results were compared with those obtained from the method recommended by AOAC International for animal feed (Method nr. 965.17) and no significant differences were found between the results. Recoveries for P and S were between 94 and 97%, and agreements with the reference values of RM were better than 94%. Phosphorus and S concentrations in animal feeds ranged from 10,026 to 28,357 mg kg-1 and 2259 to 4601 mg kg-1, respectively.


Asunto(s)
Alimentación Animal/análisis , Cromatografía Liquida/métodos , Fósforo/análisis , Azufre/análisis , Animales , Digestión , Microondas , Ácido Nítrico/química , Oxígeno/química
3.
J Agric Food Chem ; 64(8): 1817-22, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26829049

RESUMEN

The concentration of bromine and iodine was determined in shrimp and its parts (tissue and shells), and changes in the analyte concentration were evaluated after the cooking procedure. Bromine and iodine concentrations were determined by a method recently developed by our research group based on microwave-induced combustion for sample preparation and inductively coupled plasma mass spectrometry for analyte determination. The accuracy was evaluated using a reference material (NIST 8414) that was digested using the proposed method. No statistical difference was observed between certified and determined values (Student's t test, 95% confidence level). Suitable limits of detection (Br, 0.02 µg g(-1) and I, 0.01 µg g(-1)) were obtained for both analytes. Higher concentrations of both analytes were observed in shrimp shells in comparison to shrimp tissue for raw and cooked samples. Moreover, losses of Br and I (between 24 and 43%) were observed after cooking.


Asunto(s)
Bromo/análisis , Crustáceos/química , Yodo/análisis , Mariscos/análisis , Exoesqueleto/química , Animales , Culinaria , Espectrometría de Masas
4.
Talanta ; 147: 76-81, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26592579

RESUMEN

A microwave-induced combustion (MIC) system based on the volatilization process was applied for subsequent halogen determination from noncombustible inorganic matrices. Portland cement samples were selected to demonstrate the feasibility of the proposed method, allowing the subsequent determination of Cl and F by ion chromatography (IC). Samples were mixed with high-purity microcrystalline cellulose, wrapped with a polyethylene film and combusted in quartz closed vessels pressurized with oxygen (20bar). Water and NH4OH (10, 25 or 50m mol L(-1)) were evaluated for Cl and F absorption, but water was selected, using 5min of reflux after volatilization. Final solutions were also suitable for analysis by pontentiometry with ion-selective electrode (ISE) for both analytes, and no difference was found when comparing the results with IC. The accuracy of the proposed method for Cl was evaluated by analysis of certified reference materials (CRMs), and agreement with certified values ranged from 98% to 103%. Results were also compared to those using the procedure recommended by the American Society of Testing and Materials (ASTM) for the determination of total chlorides (C114-13), and no difference was found. Volatilization by MIC using a mixture of cement, cellulose and a biological CRM was carried out in order to evaluate the accuracy for F, and recovery was about 96%. The proposed method allowed suitable limits of detection for Cl and F by IC (99 and 18mg kg(-1), respectively) for routine analysis of cement. Using the proposed method, a relatively low standard deviation (<7%), high throughput (up to eight samples can be processed in less than 30min) and lower generation of laboratory effluents, when compared to the ASTM method, were obtained. Therefore, the method for volatilization of Cl and F by MIC and subsequent determination by IC can be proposed as a suitable alternative for cement analysis.

5.
Anal Bioanal Chem ; 407(26): 7957-64, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26310846

RESUMEN

This work demonstrates the feasibility of ultra-trace determination of halogens in biological samples by inductively coupled plasma mass spectrometry (ICP-MS) after decomposition by microwave-induced combustion (MIC). The conventional MIC method was improved to allow the combustion of samples with mass higher than that used in previous works in order to achieve better limits of detection (LODs). The applicability of the proposed method for ultra-trace determination of bromine and iodine in organic samples was demonstrated here using honey. It was possible to decompose up to 1000 mg of honey using microcrystalline cellulose as a combustion aid and polyethylene film for sample wrapping. After combustion, analytes were absorbed using 50 mmol L(-1) NH4OH and recoveries for Br and I were between 99 and 104 %, and relative standard deviations were lower than 5 %. Microwave-assisted alkaline dissolution (MA-AD) was also evaluated for honey sample preparation using NH4OH or tetramethylammonium hydroxide solutions. However, the LODs for the MA-AD method were unsuitable because the high carbon content in digests required a dilution step prior to the analysis by ICP-MS. The LODs obtained by MIC were improved from 1143 to 34 ng g(-1) for Br and from 571 to 6.0 ng g(-1) for I, when compared to the MA-AD method. Furthermore, it was possible to decompose up to eight samples simultaneously in 30 min (including the cooling step) with very low reagent consumption and consequently lower generation of effluents, making MIC method well suited for routine ultra-trace determination of Br and I in honey. Graphical Abstract A high mass of honey was efficiently digested by MIC for subsequent Br and I determination by ICP-MS.


Asunto(s)
Bromo/análisis , Miel/análisis , Yodo/análisis , Espectrometría de Masas/métodos , Microondas , Celulosa/química , Diseño de Equipo , Estudios de Factibilidad , Calor , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA