Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
2.
Sci Total Environ ; 944: 173819, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38857807

RESUMEN

Optimizing crop distribution stands as a pivotal approach to climate change adaption, enhancing crop production sustainability, and has been recognized for its immense potential in ensuring food security while minimizing environmental impacts. Here, we developed a climate-adaptive framework to optimize the distribution of staple crops (i.e., wheat, maize, and rice) to meet the multi-dimensional needs of crop production in China. The framework considers the feasibility of the multiple cropping systems (harvesting more than once on a cropland a year) and adopts a multi-dimensional approach, incorporating goals related to crop production, water consumption, and greenhouse gas (GHG) emissions. By optimizing, the total irrigated area of three crops would decrease by 7.7 % accompanied by a substantial 69.8 % increase in rain-fed areas compared to the baseline in 2010. This optimized strategy resulted in a notable 10.0 % reduction in total GHG emissions and a 13.1 % decrease in irrigation water consumption while maintaining consistent crop production levels. In 2030, maintaining the existing crop distribution and relying solely on yield growth would lead to a significant maize production shortfall of 27.0 %, highlighting a looming challenge. To address this concern, strategic adjustments were made by reducing irrigated areas for wheat, rice, and maize by 2.3 %, 12.8 %, and 6.1 %, respectively, while simultaneously augmenting rain-fed areas for wheat and maize by 120.2 % and 55.9 %, respectively. These modifications ensure that production demands for all three crops are met, while yielding a 6.9 % reduction in GHG emissions and a 15.1 % reduction in irrigation water consumption. This optimization strategy offers a promising solution to alleviate severe water scarcity issues and secure a sustainable agricultural future, effectively adapting to evolving crop production demands in China.


Asunto(s)
Cambio Climático , Productos Agrícolas , Gases de Efecto Invernadero , Gases de Efecto Invernadero/análisis , China , Productos Agrícolas/crecimiento & desarrollo , Agricultura/métodos , Abastecimiento de Alimentos/métodos , Abastecimiento de Agua , Zea mays/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Producción de Cultivos/métodos
3.
BMC Plant Biol ; 24(1): 502, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840053

RESUMEN

BACKGROUND: Lentil is a significant legume that are consumed as a staple food and have a significant economic impact around the world. The purpose of the present research on lentil was to assess the hydrothermal time model's capacity to explain the dynamics of Lens culinaris L. var. Markaz-09 seed germination, as well as to ascertain the germination responses at various sub-optimal temperatures (T) and water potentials (Ψ). In order to study lentil seed germination (SG) behavior at variable water potentials (Ψs) and temperatures (Ts). A lab experiment employing the hydrothermal time model was created. Seeds were germinated at six distinct temperatures: 15 0С, 20 0С, 25 0С, 30 0С, 35 0С, and 40 0С, with five Ψs of 0, -0.3, -0.6, -0.9, and - 1.2 MPa in a PEG-6000 (Polyethylene glycol 6000) solution. RESULTS: The results indicated that the agronomic parameters like Germination index (GI), Germination energy (GE), Timson germination index (TGI), were maximum in 25 0C at (-0.9 MPa) and lowest at 40 0C in 0 MPa. On other hand, mean germination time (MGT) value was highest at 15 0C in -1.2 MPa and minimum at 40 0C in (-0.6 MPa) while Mean germination rate (MGR) was maximum at 40 0C in (0 MPa) and minimum at 15 0C in (-0.6 MPa). CONCLUSIONS: The HTT model eventually defined the germination response of Lens culinaris L. var. Markaz-09 (Lentil) for all Ts and Ψs, allowing it to be employed as a predictive tool in Lens culinaris L. var. Markaz-09 (Lentil) seed germination simulation models.


Asunto(s)
Germinación , Lens (Planta) , Semillas , Temperatura , Germinación/fisiología , Semillas/fisiología , Semillas/crecimiento & desarrollo , Lens (Planta)/fisiología , Lens (Planta)/crecimiento & desarrollo , Agua/metabolismo , Modelos Biológicos , Presión Osmótica
4.
BMC Plant Biol ; 24(1): 477, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816803

RESUMEN

BACKGROUND: The rate of germination and other physiological characteristics of seeds that are germinating are impacted by deep sowing. Based on the results of earlier studies, conclusions were drawn that deep sowing altered the physio-biochemical and agronomic characteristics of wheat (Triticum aestivum L.). RESULTS: In this study, seeds of wheat were sown at 2 (control) and 6 cm depth and the impact of exogenously applied salicylic acid and tocopherol (Vitamin-E) on its physio-biochemical and agronomic features was assessed. As a result, seeds grown at 2 cm depth witnessed an increase in mean germination time, germination percentage, germination rate index, germination energy, and seed vigor index. In contrast, 6 cm deep sowing resulted in negatively affecting all the aforementioned agronomic characteristics. In addition, deep planting led to a rise in MDA, glutathione reductase, and antioxidants enzymes including APX, POD, and SOD concentration. Moreover, the concentration of chlorophyll a, b, carotenoids, proline, protein, sugar, hydrogen peroxide, and agronomic attributes was boosted significantly with exogenously applied salicylic acid and tocopherol under deep sowing stress. CONCLUSIONS: The results of the study showed that the depth of seed sowing has an impact on agronomic and physio-biochemical characteristics and that the negative effects of deep sowing stress can be reduced by applying salicylic acid and tocopherol to the leaves.


Asunto(s)
Germinación , Ácido Salicílico , Tocoferoles , Triticum , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Triticum/efectos de los fármacos , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Tocoferoles/metabolismo , Germinación/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Antioxidantes/metabolismo , Estrés Fisiológico , Desarrollo Sostenible , Clorofila/metabolismo
5.
Food Chem X ; 22: 101418, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38736980

RESUMEN

Purpose of current study was to determine physicochemical, triglyceride composition, and functional groups of wild adlay accessions (brown, black, yellow, grey, green, off white, and purple) to find out its scope as cereal crop. Triglycerides, minerals and functional groups were determined through Gas chromatography, spectrophotometer and Fourier Transform Infrared (FTIR) spectrophotometer respectively. Results revealed variation among bulk densities, specific densities, percent empty spaces, and corresponding grain counts per 10 g of sample are useful in distinguishing brown, black, yellow, grey, green, off white, and purple wild adlay accessions. Specific density and grain count per 10 g sample was significantly related. No statistical relationship exists among the pronounced physical characteristics. Brown adlay expressed the highest protein, fat, and fiber contents 15.82%, 4.76% and 2.37% respectively. Protein, fat, ash, and fiber percent contents were found comparable to cultivated adlay. Spectrophotometric analysis revealed macro elements including phosphorus, potassium, calcium, and sodium in the range 0.3% - 2.2% and micro elements boron, iron, copper, zinc, and manganese in the range 1.6 mg/kg - 20.8 mg/kg. Gas chromatography showed polyunsaturated fatty acids (PUFA) constitute the primary fraction (39% ± 7.2) of wild adlay triglycerides. Linoleic and palmitic acids were present as prominent fatty acids, 43.5% ±1.4 and 26.3% ±1.4 respectively. Infra-red frequencies distinguished functional groups in narrow band and fingerprint region of protein in association with out of plane region leading to structural differences among adlay accessions. Comparison of major distinguishing vibrational frequencies among different flours indicated black adlay containing highest functional groups appeared promising for varietal development.

6.
Heliyon ; 10(7): e28766, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38576555

RESUMEN

For thousands of years, plants have been utilized for medicinal purposes. For its naturally existing antibacterial properties, Nigella sativa is one of the most researched herbs. A study was conducted during rabi 2020-21 at The University of Haripur in order to evaluate the potential of ascorbic acid as plant growth enhancer. Two concentrations of ascorbic acid i-e 350 µm and 400 µm were sprayed along with control and water only spray on Nigella sativa crop. The study was arranged in RCBD two factor factorial arrangement. Factor A: ascorbic acid concentrations along with control and water spray, factor B: Growth stages (Stage1 = 40 days after sowing, Stage 2 = 80 DAS, Stage 3 = 120 DAS, Stage 4 = 40 + 80 DAS, Stage 5 = 40 + 120 DAS, Stage 6 = 80 + 120 DAS, Stage 7 = 40 + 80 + 120 DAS). Crop was sown in first week of November. Results reviled that chlorophyll b content, fixed oil content, 1000 seed weight, grain yield, Photosynthetic rate (µ mole m-2s-1), Transpiration rate (mmole m-2s-1), photosynthetic water use efficiency, Internal CO2 concentration (Ci) of leaf tissue and Stomatal conductance (mmole m-2s-1) were significantly affected by ascorbic acid concentrations and stage of application. Crop growth rate increased by 19.88% and 17.29%, chlorophyll b by 12.3% and 11.2%, fixed oil by 11.7% and 9%, grain yield by 10.29% and 9.8%, harvest index by 4% and 5.7% photosynthetic rate by 33%, 20% and stomatal conductance by 24.24% and 24.25 with application of ascorbic acid @ 350 µm, over control and water spray respectively. On the basis of these results it is concluded that application of ascorbic acid at the rate of 350 µm, followed by ascorbic acid at the rate of 400 µm significantly improves black cumin (Nigella sativa) yield and production. Hence it is recommended to apply ascorbic acid at the rate of 350 µm at 40 + 80+120 days after sowing of Nigella sativa crop for obtaining maximum results.

7.
J Environ Manage ; 356: 120564, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479283

RESUMEN

Robust quantification of vegetative biomass using satellite imagery using one or more forms of machine learning (ML) has hitherto been hindered by the extent and quality of training data. Here, we showcase how ML predictive demonstrably improves when additional training data is used. We collated field datasets of pasture biomass obtained via destructive sampling, 'C-Dax' reflective measurements and rising plate meters (RPM) from ten livestock farms across four States in Australia. Remotely sensed data from the Sentinel-2 constellation was used to retrieve aboveground biomass using a novel machine learning paradigm hereafter termed "SPECTRA-FOR" (Spectral Pasture Estimation using Combined Techniques of Random-forest Algorithm for Features Optimisation and Retrieval). Using this framework, we show that the low temporal resolution of Sentinel-2 in high latitude regions with persistent cloud cover leads to extensive gaps between cloud-free images, hindering model performance and, thus, contemporaneous ability to forecast real-time pasture biomass. By leveraging the spectral consistency between Sentinel-2 and Planet Lab SuperDove to overcome this limitation, we used ten spectral bands of Sentinel-2, four bands of Sentinel-2 as a proxy for pre-2022 SuperDove (referred to as synthetic SuperDove or SSD), and the actual SuperDove (ASD), given that SuperDove imagery has a higher resolution and more frequent passage compared with Sentinel-2. Using their respective bands as input features to SPECRA-FOR, model performance for the ten bands of Sentinel-2 were R2 = 0.87, root mean squared error (RMSE) of 439 kg DM/ha and mean absolute error (MAE) of 255 kg DM/ha, while that for SSD increased to an R2 of 0.92, RMSE of 346 kg DM/ha and MAE = 208 kg DM/ha. The study revealed the importance of robust data mining, imagery harmonisation and model validation for accurate real-time modelling of pasture biomass with ML.


Asunto(s)
Aprendizaje Automático , Imágenes Satelitales , Imágenes Satelitales/métodos , Biomasa , Granjas , Australia
8.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496552

RESUMEN

Intracortical brain-computer interfaces (iBCIs) enable people with tetraplegia to gain intuitive cursor control from movement intentions. To translate to practical use, iBCIs should provide reliable performance for extended periods of time. However, performance begins to degrade as the relationship between kinematic intention and recorded neural activity shifts compared to when the decoder was initially trained. In addition to developing decoders to better handle long-term instability, identifying when to recalibrate will also optimize performance. We propose a method to measure instability in neural data without needing to label user intentions. Longitudinal data were analyzed from two BrainGate2 participants with tetraplegia as they used fixed decoders to control a computer cursor spanning 142 days and 28 days, respectively. We demonstrate a measure of instability that correlates with changes in closed-loop cursor performance solely based on the recorded neural activity (Pearson r = 0.93 and 0.72, respectively). This result suggests a strategy to infer online iBCI performance from neural data alone and to determine when recalibration should take place for practical long-term use.

9.
JMIR Aging ; 7: e48292, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38437014

RESUMEN

BACKGROUND: Technology-related research on people with dementia and their carers often aims to enable people to remain living at home for longer and prevent unnecessary hospital admissions. To develop person-centered, effective, and ethical research, patient and public involvement (PPI) is necessary, although it may be perceived as more difficult with this cohort. With recent and rapid expansions in health and care-related technology, this review explored how and with what impact collaborations between researchers and stakeholders such as people with dementia and their carers have taken place. OBJECTIVE: This review aims to describe approaches to PPI used to date in technology-related dementia research, along with the barriers and facilitators and impact of PPI in this area. METHODS: A scoping review of literature related to dementia, technology, and PPI was conducted using MEDLINE, PsycINFO, Embase, and CINAHL. Papers were screened for inclusion by 2 authors. Data were then extracted using a predesigned data extraction table by the same 2 authors. A third author supported the resolution of any conflicts at each stage. Barriers to and facilitators of undertaking PPI were then examined and themed. RESULTS: The search yielded 1694 papers, with 31 (1.83%) being analyzed after screening. Most (21/31, 68%) did not make clear distinctions between activities undertaken as PPI and those undertaken by research participants, and as such, their involvement did not fit easily into the National Institute for Health and Care Research definition of PPI. Most of this mixed involvement focused on reviewing or evaluating technology prototypes. A range of approaches were described, most typically using focus groups or co-design workshops. In total, 29% (9/31) described involvement at multiple stages throughout the research cycle, sometimes with evidence of sharing decision-making power. Some (23/31, 74%) commented on barriers to or facilitators of effective PPI. The challenges identified often regarded issues of working with people with significant cognitive impairments and pressures on time and resources. Where reported, the impact of PPI was largely reported as positive, including the experiences for patient and public partners, the impact on research quality, and the learning experience it provided for researchers. Only 4 (13%) papers used formal methods for evaluating impact. CONCLUSIONS: Researchers often involve people with dementia and other stakeholders in technology research. At present, involvement is often limited in scope despite aspirations for high levels of involvement and partnership working. Involving people with dementia, their carers, and other stakeholders can have a positive impact on research, patient and public partners, and researchers. Wider reporting of methods and facilitative strategies along with more formalized methods for recording and reporting on meaningful impact would be helpful so that all those involved-researchers, patients, and other stakeholders-can learn how we can best conduct research together.


Asunto(s)
Demencia , Pacientes , Humanos , Academias e Institutos , Altruismo , Tecnología , Demencia/terapia
10.
Animals (Basel) ; 13(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38067085

RESUMEN

Nucleotides, short-chain fructooligosaccharides (scFOS), xylooligosaccharides (XOS), ß-carotene and vitamin E are reported to enhance immune function; however, the evidence of this in cats is limited. The aim of this study was to determine the immunomodulatory effects of these ingredients in kittens. Forty domestic short hair kittens were designated in litters to control or test diet for 28 weeks. Test diet was fortified with 0.33 g nucleotides, 0.45 g scFOS, 0.3 g XOS, 0.7 mg ß-carotene and 66.5 mg vitamin E per 100 g diet. Kittens were vaccinated against feline parvovirus (FPV) and herpesvirus (FHV) at 10, 14 and 18 weeks. Kittens remained healthy, with no measured evidence of adverse health. Serum FPV and FHV antibody titres were significantly (p < 0.05) higher in the test diet group at week 23 and 27, respectively. A significantly (p < 0.05) higher proportion of test diet group kittens demonstrated an adequate response (four-fold titre increase) to FHV vaccination and a significantly (p < 0.05) higher proportion reached a protective antibody titre for FHV. Serum IgM was significantly (p < 0.05) higher in the test diet group. The test diet group demonstrated a stronger humoral immune response to vaccination, suggesting the diet supports immune defence, enabling a greater response to immune challenges.

11.
Front Plant Sci ; 14: 1262001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965002

RESUMEN

Waterlogging constrains crop yields in many regions around the world. Despite this, key drivers of crop sensitivity to waterlogging have received little attention. Here, we compare the ability of the SWAGMAN Destiny and CERES models in simulating soil aeration index, a variable contemporaneously used to compute three distinct waterlogging indices, denoted hereafter as WI Destiny, WIASD1, and WIASD2. We then account for effects of crop growth stage and soil temperature on waterlogging impact by introducing waterlogging severity indices, WI Growth, which accommodates growth stage tolerance, and WI Plus, which accounts for both soil temperature and growth stage. We evaluate these indices using data collected in pot experiments with genotypes "Yang mai 11" and "Zheng mai 7698" that were exposed to both single and double waterlogging events. We found that WI Plus exhibited the highest correlation with yield (-0.82 to -0.86) suggesting that waterlogging indices which integrate effects of temperature and growth stage may improve projections of yield penalty elicited by waterlogging. Importantly, WI Plus not only allows insight into physiological determinants, but also lends itself to remote computation through satellite imagery. As such, this index holds promise in scalable monitoring and forecasting of crop waterlogging.

12.
Plants (Basel) ; 12(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37960042

RESUMEN

Nitrogen (N) deficiency can limit rice productivity, whereas the over- and underapplication of N results in agronomic and economic losses. Process-based crop models are useful tools and could assist in optimizing N management, enhancing the production efficiency and profitability of upland rice production systems. The study evaluated the ability of CSM-CERES-Rice to determine optimal N fertilization rate for different sowing dates of upland rice. Field experimental data from two growing seasons (2018-2019 and 2019-2020) were used to simulate rice responses to four N fertilization rates (N30, N60, N90 and a control-N0) applied under three different sowing windows (SD1, SD2 and SD3). Cultivar coefficients were calibrated with data from N90 under all sowing windows in both seasons and the remaining treatments were used for model validation. Following model validation, simulations were extended up to N240 to identify the sowing date's specific economic optimum N fertilization rate (EONFR). Results indicated that CSM-CERES-Rice performed well both in calibration and validation, in simulating rice performance under different N fertilization rates. The d-index and nRMSE values for grain yield (0.90 and 16%), aboveground dry matter (0.93 and 13%), harvest index (0.86 and 7%), grain N contents (0.95 and 18%), total crop N uptake (0.97 and 15%) and N use efficiencies (0.94-0.97 and 11-15%) during model validation indicated good agreement between simulated and observed data. Extended simulations indicated that upland rice yield was responsive to N fertilization up to 180 kg N ha-1 (N180), where the yield plateau was observed. Fertilization rates of 140, 170 and 130 kg N ha-1 were identified as the EONFR for SD1, SD2 and SD3, respectively, based on the computed profitability, marginal net returns and N utilization. The model results suggested that N fertilization rate should be adjusted for different sowing windows rather than recommending a uniform N rate across sowing windows. In summary, CSM-CERES-Rice can be used as a decision support tool for determining EONFR for seasonal sowing windows to maximize the productivity and profitability of upland rice production.

13.
J Environ Manage ; 347: 119146, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37852027

RESUMEN

The livestock industry accounts for a considerable proportion of agricultural greenhouse gas emissions, and in response, the Australian red meat industry has committed to an aspirational target of net-zero emissions by 2030. Increasing soil carbon storage in grazing lands has been identified as one method to help achieve this, while also potentially improving production and provision of other ecosystem services. This review examined the effects of grazing management on soil carbon and factors that drive soil carbon sequestration in Australia. A systematic literature search and meta-analysis was used to compare effects of stocking intensity (stocking rate or utilisation) and stocking method (i.e, continuous, rotational or seasonal grazing systems) on soil organic carbon, pasture herbage mass, plant growth and ground cover. Impacts on below ground biomass, soil nitrogen and soil structure are also discussed. Overall, no significant impact of stocking intensity or method on soil carbon sequestration in Australia was found, although lower stocking intensity and incorporating periods of rest into grazing systems (rotational grazing) had positive effects on herbage mass and ground cover compared with higher stocking intensity or continuous grazing. Minimal impact of grazing management on pasture growth rate and below-ground biomass has been reported in Australia. However, these factors improved with grazing intensity or rotational grazing in some circumstances. While there is a lack of evidence in Australia that grazing management directly increases soil carbon, this meta-analysis indicated that grazing management practices have potential to benefit the drivers of soil carbon sequestration by increasing above and below-ground plant production, maintaining a higher residual biomass, and promoting productive perennial pasture species. Specific recommendations for future research and management are provided in the paper.


Asunto(s)
Ecosistema , Suelo , Australia , Biomasa , Carbono/análisis , Suelo/química
14.
Autism ; : 13623613231195795, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37674319

RESUMEN

LAY ABSTRACT: Echolalia is a commonly found speech and language condition in autistic children. Children with echolalia repeat words and phrases they previously hear in place of proving a non-repetitive response. In research and when visiting speech and language services, one of the common goals is to modify these repetitions so that these children may, more socially, engage with their surrounding environment. In our research, we identified that not all parents want their children's echolalia to be modified. Some parents want their child to be able to enjoy echolalia and others don't want anyone to intervene because they see it as something that makes their child unique and being unique is something to be celebrated. We believe that there might be a way for speech and language services who want to modify echolalia and the parents in our study who do not want their child's echolalia to be modified, to be able to exist side-by-side.

16.
Int J Speech Lang Pathol ; : 1-16, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37729082

RESUMEN

PURPOSE: Echolalia, the repetition of previously heard speech, is prevalent in a variety of neurologic and psychiatric disorders. Within the context of echolalia in autism spectrum disorder (ASD), research and intervention historically assume a clinical standpoint with two opposing paradigms: behaviourism and developmentalism. The literature is largely silent on how those other than researchers and clinicians understand echolalia. This study examined how parents experience echolalia through their children with ASD. The aim of the study was to ascertain if the parental perception of echolalia in ASD aligns with, or offers alternative perspectives to, current clinically-orientated views. METHOD: We employed online semi-structured interviews to document the experiences of 126 parents, reflecting on their children with ASD aged 3 to 34 years of age, to determine if the parent experience could be mapped onto existing clinical frameworks, or if they might offer new perspectives. We used hermeneutic phenomenological data analysis in an abductive framework. RESULT: Echolalia has predominantly been represented in literature through the perspectives of behaviourism or developmentalism. We found however, that echolalia is a phenomenon that is experienced by parents in a variety of different ways to that of the current clinically-orientated understandings. Such new ways of understanding echolalia that emerged from our analysis include one understanding which is dependent upon how echolalia is heard, and one in which parents are "waiting for echolalia to evolve." CONCLUSION: The traditional dichotomous clinical positions do not resonate with all parents, and reliance on these traditional perspectives alone may impact effective engagement with parents and the success of interventions and support strategies. Our findings have implications for future research, the education of clinicians and educators, and the design of support and intervention for those who have echolalia.

17.
Environ Sci Technol ; 57(39): 14539-14547, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37729112

RESUMEN

Increased interest in greenhouse gas (GHG) emissions, including recent legislative action and voluntary programs, has increased attention on quantifying and ultimately reducing methane emissions from the natural gas supply chain. While inventories used for public or corporate GHG policies have traditionally utilized bottom-up (BU) methods to estimate emissions, the validity of such inventories has been questioned. Therefore, there is attention on utilizing full-facility measurements using airborne, satellite, or drone (top-down (TD)) techniques to inform, improve, or validate inventories. This study utilized full-facility estimates from two independent TD methods at 15 midstream natural gas facilities in the U.S.A., which were compared with a contemporaneous daily inventory assembled by the facility operator, employing comprehensive inventory methods. Estimates from the two TD methods statistically agreed in 2 of 28 paired measurements. Operator inventories, which included extensions to capture sources beyond regular inventory requirements and integration of local measurements, estimated significantly lower emissions than the TD estimates for 40 of 43 paired comparisons. Significant disagreement was observed at most facilities, both between the two TD methods and between the TD estimates and operator inventory. These findings have two implications. First, improving inventory estimates will require additional on-site or ground-based diagnostic screening and measurement of all sources. Second, the TD full-facility measurement methods need to undergo further testing, characterization, and potential improvement specifically tailored for complex midstream facilities.

18.
Plants (Basel) ; 12(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37571012

RESUMEN

The remarkable yield performance of super hybrid rice has played a crucial role in ensuring global food security. However, there is a scarcity of studies investigating the contribution of radiation use efficiency (RUE) to hybrid rice yields under different nitrogen and potassium treatments. In this three-year field experiment, we aimed to evaluate the impact of two hybrid rice varieties (Y-liangyou 900: YLY900 and Quanyouhuazhan: QYHZ) under varying nitrogen regimes (N90: 90 kg N ha-1, N120: 120 kg N ha-1, N180: 180 kg N ha-1) and potassium regimes (K120: 120 kg K2O ha-1, K160: 160 kg K2O ha-1, K210: 210 kg K2O ha-1) on grain yield and its physiological determinants, including RUE, intercepted photosynthetically active radiation (IPAR), aboveground biomass production, and harvest index (HI). Our results revealed that both rice varieties exhibited significantly higher yields when coupled with nitrogen and potassium fertilization. Compared to the N90 × K120 treatment, the N120 × K160 and N180 × K210 combinations resulted in substantial increases in grain yield (12.0% and 21.1%, respectively) and RUE (11.9% and 21.4%, respectively). The YLY900 variety showed notable yield improvement due to enhanced aboveground biomass production resulting from increased IPAR and RUE. In contrast, the QYHZ variety's aboveground biomass accumulation was primarily influenced by RUE rather than IPAR, resulting in higher RUE and grain yields of 9.2% and 5.3%, respectively, compared to YLY900. Importantly, fertilization led to significant increases in yield, biomass, and RUE, while HI remained relatively constant. Both varieties demonstrated a positive relationship between grain yield and IPAR and RUE. Multiple regression analysis indicated that increasing RUE was the primary driver of yield improvement in hybrid rice varieties. By promoting sustainable agriculture and enhancing fertilizer management, elevating nitrogen and potassium levels from a low base would synergistically enhance rice yield and RUE, emphasizing the critical importance of RUE in hybrid rice productivity compared to HI.

19.
Environ Sci Technol ; 57(32): 11823-11833, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37506319

RESUMEN

Government policies and corporate strategies aimed at reducing methane emissions from the oil and gas sector increasingly rely on measurement-informed, site-level emission inventories, as conventional bottom-up inventories poorly capture temporal variability and the heavy-tailed nature of methane emissions. This work is based on an 11-month methane measurement campaign at oil and gas production sites. We find that operator-level top-down methane measurements are lower during the end-of-project phase than during the baseline phase. However, gaps persist between end-of-project top-down measurements and bottom-up site-level inventories, which we reconcile with high-frequency data from continuous monitoring systems (CMS). Specifically, we use CMS to (i) validate specific snapshot measurements and determine how they relate to the temporal emission profile of a given site and (ii) create a measurement-informed, site-level inventory that can be validated with top-down measurements to update conventional bottom-up inventories. This work presents a real-world demonstration of how to reconcile CMS rate estimates and top-down snapshot measurements jointly with bottom-up inventories at the site level. More broadly, it demonstrates the importance of multiscale measurements when creating measurement-informed, site-level emission inventories, which is a critical aspect of recent regulatory requirements in the Inflation Reduction Act, voluntary methane initiatives such as the Oil and Gas Methane Partnership 2.0, and corporate strategies.


Asunto(s)
Contaminantes Atmosféricos , Metano , Metano/análisis , Gas Natural/análisis , Contaminantes Atmosféricos/análisis
20.
Plant Physiol Biochem ; 201: 107914, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37515893

RESUMEN

The present study was conducted to determine the effect of indole acetic acid (IAA) and Citrate Capped Silver Nanoparticles (Cit-AgNPs) on various attributes of maize under induced salinity stress. Seeds of the said variety were collected from Cereal Crop Research Institute (CCRI) Pirsabaq, Nowshera, sterilized and sown in earthen pots filled with 2 kg silt and soil (1:2) in triplicates in the green house of the Botany Department, University of Peshawar. Nanoparticles were analyzed by scanning electron microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), Thermo-gravimetric analysis (TGA) and Differential thermal analysis (DTA). Results of SEM revealed spherical morphology of Cit-AgNPs while EDX showed various elemental composition. TGA showed dominant weight loss up to 300 °C while the DTA showed major exothermic peaks at 420 °C. High Salinity concentration (80 mM) imposed significant detrimental impacts by reducing the agronomic attributes, photosynthetic pigments, osmolytes and antioxidant enzymes, which was remarkably ameliorated by the foliar application of Cit-AgNPs and IAA. Agronomic attributes including leaf, root and shoot fresh and dry weight was improved by 52-74%, 43-69% and 36-79% in individual as well as combined treatments of IAA and NPs. Photosynthetic pigments were amplified by 35-63%, total osmolytes were augmented by 39-68% and antioxidant enzymes including SOD and POD were boosted by 42-57% and 37-62% respectively, in combined as well as individual application. Conclusively, Cit-AgNPs are considered as salt mitigating entities that enhance the tolerance level of crop plants along with IAA, which may be beneficial for the plants growing in saline stressed environment.


Asunto(s)
Antioxidantes , Nanopartículas del Metal , Antioxidantes/química , Nanopartículas del Metal/química , Ácido Cítrico , Plata/farmacología , Plata/química , Zea mays , Estrés Salino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA