Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 26(10): 107804, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37720099

RESUMEN

Human pluripotent stem cell (hPSC)-derived tissues can be used to model diseases in cell types that are challenging to harvest and study at-scale, such as neutrophils. Neutrophil dysregulation, specifically neutrophil extracellular trap (NET) formation, plays a critical role in the prognosis and progression of multiple diseases, including COVID-19. While hPSCs can generate limitless neutrophils (iNeutrophils) to study these processes, current differentiation protocols generate heterogeneous cultures of granulocytes and precursors. Here, we describe a method to improve iNeutrophil differentiations through the deletion of GATA1. GATA1 knockout (KO) iNeutrophils are nearly identical to primary neutrophils in form and function. Unlike wild-type iNeutrophils, GATA1 KO iNeutrophils generate NETs in response to the physiologic stimulant lipopolysaccharide, suggesting they are a more accurate model when performing NET inhibitor screens. Furthermore, through deletion of CYBB, we demonstrate that GATA1 KO iNeutrophils are a powerful tool in determining involvement of a given protein in NET formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA