Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Biomech (Bristol, Avon) ; 62: 34-41, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30665037

RESUMEN

BACKGROUND: Cervical fusion is associated with adjacent segment degeneration. Cervical disc arthroplasty is considered an alternative to reduce risk of adjacent segment disease. Kinematics after arthroplasty should closely replicate healthy in vivo kinematics to reduce adjacent segment stresses. The purpose of this study was to assess the kinematics of a polycrystalline diamond cervical disc prosthesis. METHODS: Nine cadaveric C3-T1 spines were tested intact and after one (C5-C6) and two level (C5-C7) arthroplasty (Triadyme-C, Dymicron Inc., Orem, UT, USA). Kinematics were evaluated in flexion-extension, lateral bending, and axial rotation. FINDINGS: Prosthesis placement at C5-C6 and C6-C7 was 0.5 mm anterior and 0.6 mm posterior to midline respectively. C5-C6 flexion-extension motion was 12.8° intact and 10.5° after arthroplasty. C6-C7 flexion-extension motion was 10.0 and 11.4° after arthroplasty. C5-C6 lateral bending reduced from 8.5 to 3.7° after arthroplasty and at C6-C7 from 7.5 to 5.1°. C5-C6 axial rotation decreased from 10.4 to 6.2° after arthroplasty and at C6-C7 from 7.8 to 5.3°. Segmental lordosis increased by 4.2°, and middle disc height by 1.4 mm after arthroplasty. Change in center of rotation from intact to arthroplasty averaged 0.9 mm posteriorly and 0.1 mm caudally at C5-C6, and 1.4 mm posteriorly and 0.3 mm cranially at C6-C7. INTERPRETATION: The cervical disc arthroplasty evaluated restored flexion-extension motion to intact levels and moderately increased segmental stiffness. Disc height increased by up to 1.5 mm and segmental lordosis by 4.2°. The unique prosthesis design allowed the axis of rotation after arthroplasty to closely mimic the native location.


Asunto(s)
Artroplastia/métodos , Vértebras Cervicales/cirugía , Prótesis e Implantes , Implantación de Prótesis , Enfermedades de la Columna Vertebral/cirugía , Reeemplazo Total de Disco/métodos , Adulto , Fenómenos Biomecánicos , Cadáver , Vértebras Cervicales/fisiología , Diamante , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cuello/cirugía , Rango del Movimiento Articular/fisiología , Rotación
2.
Anal Chim Acta ; 727: 34-40, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22541820

RESUMEN

The principal thermodynamic advantages of using microemulsions over standard emulsions for flow metal analysis are the greatly increased analyte stability and emulsive homogeneity that improve both the ease of sample preparation, and the analytical result. In this study a piston propelled flow-batch analyzer (PFBA) for the determination of Cu, Cr and Pb in gasoline and naphtha by graphite furnace atomic absorption spectrometry (GF AAS) was explored. Investigative phase modeling for low dilution was conducted both for gasoline and naphtha microemulsions. Rheological considerations were also explored including a mathematical flow derivation to fine tune the system's operational parameters, and the GF AAS coupling. Both manual and automated procedures for microemulsion preparation were compared. The results of the paired t test at a 95% confidence level showed no significant differences between them. Further recovery test results confirmed a negligible matrix effect of the sample on the analyte absorption signals and an efficient stabilization of the samples (with metals) submitted to microemulsion treatment. The accuracy of the developed procedure was attested by good recovery percentages in the ranges of 100.0±3.5% for Pb in the naphtha samples, and 100.2±3.4% and 100.7±4.6% for Cu and Cr, respectively in gasoline samples.

3.
Talanta ; 88: 717-23, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22265564

RESUMEN

Both turbidimetric and photometric determinations of total tannins in samples of green and black tea, using a micro-flow-batch analyzer (µFBA) were studied. The miniaturized system was formed using photocurable urethane-acrylate resin and ultraviolet lithography technique. The turbidimetric method was based on the precipitation reaction of Cu (II) with tannins in acetate medium at a pH of 4.5. The photometric method was based on the complexation reaction of tannins with ferrous tartrate. The turbidimetric µFBA was able to test 200 samples per hour. The photometric µFBA allowed 300 analyses per hour, generating 136µL of residue per analysis. The paired t test, at a 95% confidence level, showed no statistically significant differences between results obtained by both methods and the reference method. The urethane-acrylate µFBA maintained satisfactory physical and chemical properties, and represents an improvement over conventional flow-batch analyzer.


Asunto(s)
Taninos/análisis , Té/química , Acetatos/química , Resinas Acrílicas/química , Automatización de Laboratorios , Cobre/química , Concentración de Iones de Hidrógeno , Nefelometría y Turbidimetría , Procesos Fotoquímicos , Fotometría , Poliuretanos/química , Rayos Ultravioleta
4.
Talanta ; 86: 208-13, 2011 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-22063532

RESUMEN

This study introduces the first micro-flow-batch analyzer (µFBA). A simple, low-cost, deep urethane-acrylate photo-resist ultraviolet-lithographic technique was used in its development. Details of the microfabrication process are presented including; the use of two superimposed photo-masks to improve the micro-channel and stop chamber border definition, as well as integration of an LED/phototransistor photometric pair, while using an open nylon-thread (fishing line) micro-mixing system for solutions homogenization. The system was used for photometric determination of Fe(II) in oral solution iron supplements employing the well-known 1,10-phenanthroline method, with instantaneously prepared micro-chamber calibration solutions. All analytical processes were accomplished by simply changing the timing parameters in the control software. It must be emphasized here that there was no outside preparation of the standard calibration solutions; the mixing was all done in-chamber/in-line, with all solutions maintained flowing while being proportioned for the measurement processes. The µFBA results were acceptable when compared to the reference method, and comparable to normal flow-batch systems. It was possible both to project and build a low-cost probe with high sample throughput (about 120 h(-1)), low relative standard deviations (about 1.1%), and reduced reagent consumption (30 times less than the reference method). The µFBA system based on urethane-acrylate presented satisfactory physical and chemical properties while keeping the flexibility, versatility, robustness, and multi-task characteristics of normal flow-batch analyzers. The µFBA system contributes to the advance of micro-analytical instrumentation, while realizing the basic principles of "Green Chemistry".

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA