Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Biomed Eng ; 45(3): 829-838, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27633018

RESUMEN

Nasal tip mechanical stability is important for functional and cosmetic nasal airway surgery. Palpation of the nasal tip provides information on tip strength to the surgeon, though it is a purely subjective assessment. Providing a means to simulate nasal tip deformation with a validated model can offer a more objective approach in understanding the mechanics and nuances of the nasal tip support and eventual nasal mechanics as a whole. Herein we present validation of a finite element (FE) model of the nose using physical measurements recorded using an ABS plastic-silicone nasal phantom. Three-dimensional photogrammetry was used to capture the geometry of the phantom at rest and while under steady state load. The silicone used to make the phantom was mechanically tested and characterized using a linear elastic constitutive model. Surface point clouds of the silicone and FE model were compared for both the loaded and unloaded state. The average Hausdorff distance between actual measurements and FE simulations across the nose were 0.39 ± 1.04 mm and deviated up to 2 mm at the outermost boundaries of the model. FE simulation and measurements were in near complete agreement in the immediate vicinity of the nasal tip with millimeter accuracy. We have demonstrated validation of a two-component nasal FE model, which could be used to model more complex modes of deformation where direct measurement may be challenging. This is the first step in developing a nasal model to simulate nasal mechanics and ultimately the interaction between geometry and airflow.


Asunto(s)
Modelos Biológicos , Nariz , Fantasmas de Imagen , Resinas Acrílicas/química , Butadienos/química , Análisis de Elementos Finitos , Humanos , Poliestirenos/química , Siliconas/química
2.
JAMA Facial Plast Surg ; 18(2): 136-43, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26720757

RESUMEN

IMPORTANCE: Computational modeling can be used to mimic the forces acting on the nasal framework that lead to the inverted-V deformity (IVD) after surgery and potentially determine long-range outcomes. OBJECTIVE: To demonstrate the use of the finite element method (FEM) to predict the formation of the IVD after separation of the upper lateral cartilages (ULCs) from the nasal septum. DESIGN, SETTING, AND PARTICIPANTS: A computer model of a nose was derived from human computed tomographic data. The septum and upper and lower lateral cartilages were designed to fit within the soft-tissue envelope using computer-aided design software. Mechanical properties were obtained from the literature. The 3 simulations created included (1) partial fusion of the ULCs to the septum, (2) separation of the ULCs from the septum, and (3) a fully connected model to serve as a control. Forces caused by wound healing were prescribed at the junction of the disarticulated ULCs and septum. Using FEM software, equilibrium stress and strain were calculated. Displacement of the soft tissue along the nasal dorsum was measured and evaluated for evidence of morphologic change consistent with the IVD. MAIN OUTCOME AND MEASURES: Morphologic changes on the computer models in response to each simulation. RESULTS: When a posteroinferior force vector was applied along the nasal dorsum, the areas of highest stress were along the medial edge of the ULCs and at the junction of the ULCs and the nasal bones. With full detachment of ULCs and the dorsal septum, the characteristic IVD was observed. Both separation FEMs produced a peak depression of 0.3 mm along the nasal dorsum. CONCLUSIONS AND RELEVANCE: The FEM can be used to simulate the long-term structural complications of a surgical maneuver in rhinoplasty, such as the IVD. When applied to other rhinoplasty maneuvers, the use of FEMs may be useful to simulate the long-term outcomes, particularly when long-term clinical results are not available. In the future, use of FEMs may simulate rhinoplasty results beyond simply morphing the outer contours of the nose and allow estimation of potentially long-term clinical outcomes that may not be readily apparent. LEVEL OF EVIDENCE: NA.


Asunto(s)
Simulación por Computador , Análisis de Elementos Finitos , Modelos Anatómicos , Cartílagos Nasales/cirugía , Tabique Nasal/cirugía , Complicaciones Posoperatorias/prevención & control , Rinoplastia/métodos , Fenómenos Biomecánicos , Diseño Asistido por Computadora , Humanos , Cartílagos Nasales/diagnóstico por imagen , Tabique Nasal/diagnóstico por imagen , Tomografía Computarizada por Rayos X
3.
Laryngoscope ; 125(2): 326-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25130506

RESUMEN

OBJECTIVE: We employ a nasal tip finite element model (FEM) to evaluate contributions of two of the three major tip support mechanisms: attachments between the upper and lower lateral cartilages and attachment of the medial crura to the caudal septum. STUDY DESIGN: The nasal tip FEM computed stress distribution and strain energy density (SED) during nasal tip compression. We examined the impact of attachments between the upper and lower lateral cartilages and the attachment of the medial crura to the caudal septum on nasal tip support. METHODS: The FEM consisted of three tissue components: bone, cartilage, and skin. Four models were created: A) control model with attachments present at the scroll and caudal septum; B) simulated disruption of scroll; C) simulated disruption of medial crura attachments to caudal septum; and D) simulated disruption of scroll and medial crura attachments to caudal septum. Spatial distribution of stress and SED were calculated. RESULTS: The keystone, intermediate crura, caudal septum, and nasal spine demonstrated high concentration of stress distribution. Across all models, there was no difference in stress distribution. Disruption of the scroll resulted in 1% decrease in SED. Disruption of the medial crura attachments to the caudal septum resulted in 4.2% reduction in SED. Disruption of both scroll and medial crural attachments resulted in 9.1% reduction in SED. CONCLUSION: The nasal tip FEM is an evolving tool to study structural nasal tip dynamics and demonstrates the loss of nasal tip support with disruption of attachments at the scroll and nasal base. LEVEL OF EVIDENCE: N/A.


Asunto(s)
Diseño Asistido por Computadora , Rinoplastia/métodos , Simulación por Computador , Análisis de Elementos Finitos , Humanos , Cartílagos Nasales/cirugía , Tabique Nasal/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA