Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Heliyon ; 9(6): e17421, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37426785

RESUMEN

Nutrient management research was conducted across locations to investigate the influence of landscape position (hill, mid-, and foot slope) in teff (Eragrostis tef) and wheat (Triticum aestivum) yield response to fertilizer application and liming in the 2018 and 2019 cropping seasons. The treatments included 1) NPS fertilizer as a control treatment (42 N + 10P + 4.2S kg ha-1 for teff and 65 N + 20P + 8.5S kg ha-1 for wheat); 2) NPS and potassium (73 N + 17P + 7.2S + 24 K kg ha-1 for teff and 103 N + 30P + 12.7S + 24 K kg ha-1 for wheat) and 3) NPSK and zinc (73 N + 17P + 7.2S + 24K + 5.3Zn kg ha-1 for teff and 103 N + 30P + 12.7S + 24K + 5,3Zn kg ha-1 for wheat) in acid soils with and without liming. Results showed that the highest teff and wheat grain yields of 1512 and 4252 kg ha-1 were obtained at the foot slope position, with the respective yield increments of 71% and 57% over the hillslope position. Yield response to fertilizer application significantly decreased with increasing slope owing to the decrease in soil organic carbon and soil water content and the increase in soil acidity. The application of lime with NPSK and NPSKZn fertilizer increased teff and wheat yields by 43-54% and 32-35%, respectively compared to the application of NPS fertilizer without liming where yield increments were associated with the application of N and P nutrients. Orthogonal contrasts revealed that landscape position, fertilizer application, and their interaction effects were significant on teff and wheat yields. Soil properties including soil pH, organic carbon, total N, and soil water content were increased down the slope, which might be attributed to sedimentation down the slope. However, available P is yet very low both in acidic and non-acidic soils. We conclude that crop response to applied nutrients could be enhanced by targeting nutrient management practices to agricultural landscape features and addressing other yield-limiting factors such as soil acidity and nutrient availability by conducting further research.

2.
Sustainability ; 11(10): 2891, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33552560

RESUMEN

Much research has been conducted on cereal-legume intercropping as a sustainable intensification (SI) practice in Eastern and Southern Africa (ESA). However, the role of inorganic fertilizers in sustainably intensifying intercropping systems has not been systematically analyzed. Therefore, the objective of the present analysis was to assess the role of inorganic fertilizer use in cereal-pigeonpea (Cajanus cajan) intercropping in terms of SI indicators, namely, yield, production risks, input use efficiency, and economic returns. The data used for this analysis were gathered from over 900 on-farm trials across Kenya, Tanzania, and Mozambique. All SI indicators assessed showed that intercropping combined with application of small amounts of inorganic fertilizers is superior to unfertilized intercrops. Fertilizer application in the intercropping system improved cereal yields by 71-282% and pigeon pea yields by 32-449%, increased benefit-cost ratios by 10-40%, and reduced variability in cereal yields by 40-56% and pigeonpea yields by 5-52% compared with unfertilized intercrops. Improved yields and reduced variability imply lowering farmers' risk exposure and improved credit rating, which could enhance access to farm inputs. We conclude that the strategic application of small amounts of inorganic fertilizers is essential for the productivity and economic sustainability of cereal-pigeonpea intercropping under smallholder farming in ESA.

4.
Proc Natl Acad Sci U S A ; 104(43): 16775-80, 2007 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-17942701

RESUMEN

We describe the concept, strategy, and initial results of the Millennium Villages Project and implications regarding sustainability and scalability. Our underlying hypothesis is that the interacting crises of agriculture, health, and infrastructure in rural Africa can be overcome through targeted public-sector investments to raise rural productivity and, thereby, to increased private-sector saving and investments. This is carried out by empowering impoverished communities with science-based interventions. Seventy-eight Millennium Villages have been initiated in 12 sites in 10 African countries, each representing a major agro-ecological zone. In early results, the research villages in Kenya, Ethiopia, and Malawi have reduced malaria prevalence, met caloric requirements, generated crop surpluses, enabled school feeding programs, and provided cash earnings for farm families.


Asunto(s)
Población Rural , África/epidemiología , Agricultura , Conservación de los Recursos Naturales , Salud , Humanos , Renta , Malaria/epidemiología , Naciones Unidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA