Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 38(16): 4850-4867, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31709929

RESUMEN

Elizabethkingia anophelis is an emerging human pathogen causing neonatal meningitis, catheter-associated infections and nosocomial outbreaks with high mortality rates. Besides, they are resistant to most antibiotics used in empirical therapy. In this study, therefore, we used immunoinformatic approaches to design a prophylactic peptide vaccine against E. anophelis as an alternative preventive measure. Initially, cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes were predicted from the highest antigenic protein. The CTL and HTL epitopes together had a population coverage of 99.97% around the world. Eventually, six CTL, seven HTL, and two LBL epitopes were selected and used to construct a multi-epitope vaccine. The vaccine protein was found to be highly immunogenic, non-allergenic, and non-toxic. Codon adaptation and in silico cloning were performed to ensure better expression within E. coli K12 host system. The stability of the vaccine structure was also improved by disulphide bridging. In addition, molecular docking and dynamics simulation revealed strong and stable binding affinity between the vaccine and toll-like receptor 4 (TLR4) molecule. The immune simulation showed higher levels of T-cell and B-cell activities which was in coherence with actual immune response. Repeated exposure simulation resulted in higher clonal selection and faster antigen clearance. Nevertheless, experimental validation is required to ensure the immunogenic potency and safety of this vaccine to control E. anophelis infection in the future.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Epítopos de Linfocito B , Epítopos de Linfocito T , Biología Computacional , Escherichia coli , Flavobacteriaceae , Humanos , Recién Nacido , Simulación del Acoplamiento Molecular , Proteoma , Vacunas de Subunidad
2.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-865427

RESUMEN

Objective: To investigate bioactive phytochemicals and antioxidant activities of Nymphaea nouchali and to explore its anticancer pathways by a network pharmacology approach.Methods: Using a spectrophotometer and high-performance liquid chromatography-diode array detector (HPLC-DAD), we quantified bioactive phytochemicals in methanolic extract of Nymphaea nouchali tuber. The extracts were investigated for in vitro antioxidant properties. Targets of these bioactive phytochemicals were predicted and anticancer-associated pathways were analyzed by a network pharmacology approach. Moreover, we identified the predicted genes associated with cancer pathways and the hub genes in the protein-protein interaction network of predicted genes. Results: Quantitative results indicated the total phenolics, total flavonoids, and total proanthocyanidins in the methanolic extract of Nymphaea nouchali tuber. HPLC-DAD analysis showed rutin (39.44 mg), catechin (39.20 mg), myricetin (30.77 mg), ellagic acid (11.05 mg), gallic acid (3.67 mg), vanillic acid (0.75 mg), rosmarinic acid (4.81 mg), p-coumaric acid (3.35 mg), and quercetin (0.90 mg) in 1 g of dry extract. The extract showed the radical scavenging activities of 2, 2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and N,N-dimethyl-p-phenylenediamine. By using network pharmacology, we predicted 130 target genes associated with cancer pathways. The top hub genes (IL6, AKT1, EGFR, JUN, PTGS2, MAPK3, CASP3, and CXCL8) were also identified, which were associated with cancer pathways and interacted with bioactive phytochemicals of the methanolic extract of Nymphaea nouchali tuber. Conclusions: Our study provides insights into the mechanism of anticancer activities of the methanolic extract of Nymphaea nouchali tuber.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA