Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 470
Filtrar
1.
Front Immunol ; 15: 1438726, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221238

RESUMEN

Mechanical forces affect periodontal health through multiple mechanisms. Normally, mechanical forces can boost soft and hard tissue metabolism. However, excessive forces may damage the periodontium or result in irreversible inflammation, whereas absence of occlusion forces also leads to tissue atrophy and bone resorption. We systemically searched the PubMed and Web of Science databases and found certain mechanisms of mechanical forces on immune defence, extracellular matrix (ECM) metabolism, specific proteins, bone metabolism, characteristic periodontal ligament stem cells (PDLSCs) and non-coding RNAs (ncRNAs) as these factors contribute to periodontal homeostasis. The immune defence functions change under forces; genes, signalling pathways and proteinases are altered under forces to regulate ECM metabolism; several specific proteins are separately discussed due to their important functions in mechanotransduction and tissue metabolism. Functions of osteocytes, osteoblasts, and osteoclasts are activated to maintain bone homeostasis. Additionally, ncRNAs have the potential to influence gene expression and thereby, modify tissue metabolism. This review summarizes all these mechanisms of mechanical forces on periodontal homeostasis. Identifying the underlying causes, this review provides a new perspective of the mechanisms of force on periodontal health and guides for some new research directions of periodontal homeostasis.


Asunto(s)
Homeostasis , Mecanotransducción Celular , Ligamento Periodontal , Periodoncio , Humanos , Periodoncio/metabolismo , Animales , Ligamento Periodontal/metabolismo , Matriz Extracelular/metabolismo , Estrés Mecánico , Enfermedades Periodontales/metabolismo , Enfermedades Periodontales/inmunología , ARN no Traducido/genética , ARN no Traducido/metabolismo , Células Madre/metabolismo
2.
Cell Commun Signal ; 22(1): 427, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223674

RESUMEN

BACKGROUND: Depression is often linked to inflammation in the brain. Researchers have been exploring ways to reduce this inflammation to improve depression symptoms. One potential target is a protein called RIPK1, which is known to contribute to brain inflammation. However, it's unclear how RIPK1 influences depression. Our study aims to determine whether RIPK1 inhibition could alleviate neuroinflammation-associated depression and elucidate its underlying mechanisms. METHODS: To investigate our research objectives, we established a neuroinflammation mouse model by administering LPS. Behavioral and biochemical assessments were conducted on these mice. The findings were subsequently validated through in vitro experiments. RESULTS: Using LPS-induced depression models, we investigated RIPK1's role, observing depressive-like behaviors accompanied by elevated cytokines, IBA-1, GFAP levels, and increased inflammatory signaling molecules and NO/H2O2. Remarkably, Necrostatin (Nec-1 S), a RIPK1 inhibitor, mitigated these changes. We further found altered expression and phosphorylation of eIF4E, PI3K/AKT/mTOR, and synaptic proteins in hippocampal tissues, BV2, and N2a cells post-LPS treatment, which Nec-1 S also ameliorated. Importantly, eIF4E inhibition reversed some of the beneficial effects of Nec-1 S, suggesting a complex interaction between RIPK1 and eIF4E in LPS-induced neuroinflammation. Moreover, citronellol, a RIPK1 agonist, significantly altered eIF4E phosphorylation, indicating RIPK1's potential upstream regulatory role in eIF4E and its contribution to neuroinflammation-associated depression. CONCLUSION: These findings propose RIPK1 as a pivotal mediator in regulating neuroinflammation and neural plasticity, highlighting its significance as a potential therapeutic target for depression.


Asunto(s)
Depresión , Modelos Animales de Enfermedad , Lipopolisacáridos , Enfermedades Neuroinflamatorias , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Masculino , Ratones , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Imidazoles/farmacología , Imidazoles/uso terapéutico , Indoles/farmacología , Indoles/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/patología , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
3.
Cell Biosci ; 14(1): 111, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218913

RESUMEN

BACKGROUND: Deubiquitinating enzymes (DUBs) are pivotal in maintaining cell homeostasis by regulating substrate protein ubiquitination in both healthy and cancer cells. Ubiquitin-specific protease 10 (USP10) belongs to the DUB family. In this study, we investigated the clinical and pathological significance of USP10 and Unc-51-like autophagy activating kinase 1 (ULK1) in osteosarcoma (OS), as well as the mechanism of USP10 action in ULK1-mediated autophagy and disease progression. RESULTS: The analysis of OS and adjacent normal tissues demonstrated that USP10 and ULK1 were significantly overexpressed in OS, and a positive association between their expression and malignant properties was observed. USP10 knockdown in OS cells reduced ULK1 mRNA and protein expression, whereas USP10 overexpression increased ULK1 mRNA and protein expression. In vitro experiments showed that USP10 induced autophagy, cell proliferation, and invasion by enhancing ULK1 expression in OS cell lines. Furthermore, we found that the regulation of ULK1-mediated autophagy, cell proliferation, and invasion in OS by USP10 was dependent on glycogen synthase kinase 3ß (GSK3ß) activity. Mechanistically, USP10 promoted ULK1 transcription by interacting with and stabilising GSK3ß through deubiquitination, which, in turn, increased the activity of the ULK1 promoter, thereby accelerating OS progression. Using a xenograft mouse model, we showed that Spautin-1, a small-molecule inhibitor targeting USP10, significantly reduced OS development, with its anti-tumour activity significantly enhanced when combined with the chemotherapeutic agent cisplatin. CONCLUSION: Collectively, we demonstrated that the USP10-GSK3ß-ULK1 axis promoted autophagy, cell proliferation, and invasion in OS. The findings imply that targeting USP10 may offer a promising therapeutic avenue for treating OS.

4.
Transl Res ; 273: 127-136, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39181195

RESUMEN

Periodontitis is a chronic inflammatory oral disease that impaired the tooth-supporting apparatus, including gingival tissue destruction and alveolar bone resorption. The initiation of periodontitis is linked to the presence of oral bacteria, particularly P. gingivalis within pathogenic biofilms. Here, we demonstrated the central role of the autophagy regulator Transcription Factor EB (TFEB) in orchestrating autophagy activation and modulating the host immune response against P. gingivalis in periodontitis. Upregulation of TFEB expression at the protein level and heightened nuclear localization occurred during the progressive stages of periodontitis. Functionally, TFEB overexpression emerges as a potent alleviator of periodontitis-associated phenotypes, operating through the activation of autophagy and the inhibition of the NF-κB pathway in both in vivo and in vitro models. In addition, TFEB knockdown exacerbates the inflammatory response by upregulating pro-inflammatory cytokines. The dual regulatory role of TFEB in governing both autophagy and inflammatory responses unveils novel insights into periodontitis pathogenesis, positioning TFEB as a promising therapeutic target for periodontitis intervention.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Inflamación , Periodontitis , Periodontitis/microbiología , Periodontitis/patología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Animales , Humanos , Ratones , Porphyromonas gingivalis , FN-kappa B/metabolismo , Ratones Endogámicos C57BL , Masculino
5.
Hum Cell ; 37(5): 1290-1305, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38995503

RESUMEN

Osteonecrosis of the femoral head (ONFH) is a condition that causes considerable pain and discomfort for patients, and its pathogenic mechanisms are not yet fully understood. While there have been many studies that suggest multiple factors may contribute to its development, current treatments involve both surgical and nonsurgical options. However, there is still much room for improvement in these treatment methods, particularly when it comes to preventing postoperative complications and optimizing surgical procedures. Nanomaterials, as a type of small molecule material, have shown great promise in treating bone tissue diseases, including ONFH. In fact, several nanocomposite materials have demonstrated specific effects in preventing ONFH, promoting bone tissue repair and growth, and optimizing surgical treatment. This article provides a comprehensive overview of current treatments for ONFH, including their advantages and limitations, and reviews the latest advances in nanomaterials for treating this condition. Additionally, this article explores the therapeutic mechanisms involved in using nanomaterials to treat ONFH and to identify new methods and ideas for improving outcomes for patients.


Asunto(s)
Necrosis de la Cabeza Femoral , Nanoestructuras , Humanos , Necrosis de la Cabeza Femoral/terapia , Necrosis de la Cabeza Femoral/etiología , Nanocompuestos
6.
Eur J Med Chem ; 275: 116638, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38950489

RESUMEN

The cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway promotes antitumor immune responses by sensing cytosolic DNA fragments leaked from nucleus and mitochondria. Herein, we designed a highly charged ruthenium photosensitizer (Ru1) with a ß-carboline alkaloid derivative as the ligand for photo-activating of the cGAS-STING pathway. Due to the formation of multiple non-covalent intermolecular interactions, Ru1 can self-assemble into carrier-free nanoparticles (NPs). By incorporating the triphenylphosphine substituents, Ru1 can target and photo-damage mitochondrial DNA (mtDNA) to cause the cytoplasmic DNA leakage to activate the cGAS-STING pathway. Finally, Ru1 NPs show potent antitumor effects and elicit intense immune responses in vivo. In conclusion, we report the first self-assembling mtDNA-targeted photosensitizer, which can effectively activate the cGAS-STING pathway, thus providing innovations for the design of new photo-immunotherapeutic agents.


Asunto(s)
Antineoplásicos , Inmunoterapia , Proteínas de la Membrana , Nucleotidiltransferasas , Fármacos Fotosensibilizantes , Rutenio , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/síntesis química , Humanos , Nucleotidiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Rutenio/química , Rutenio/farmacología , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Nanopartículas/química , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , ADN Mitocondrial/metabolismo , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/patología
7.
Oral Dis ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039759

RESUMEN

OBJECTIVES: Periodontitis is a common oral disease that is aggravated by occlusal trauma. Fibrin is a protein that participates in blood clotting and is involved in several human diseases. The deposition of fibrin in periodontal tissues can induce periodontitis, while mechanical forces may regulate the degradation of fibrin. Our study investigated how occlusal trauma aggravating periodontitis through regulating the plasminogen/plasmin system and fibrin deposition. MATERIALS AND METHODS: This study included 84 C57BL/6 mice in which periodontitis was induced with or without occlusal trauma. Micro-computed tomography was used to assess bone resorption. Fibrin, fibrinogen, plasminogen, plasmin, tissue plasminogen activator (t-PA), and urokinase plasminogen activator (u-PA) levels were measured using Frazer-Lendrum staining, quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting, immunofluorescence staining, and immunohistochemistry staining. RESULTS: Occlusal trauma aggravated inflammation and bone resorption. The periodontitis group showed significant fibrin deposition. Occlusal trauma increased fibrin deposition and neutrophil aggregation. The periodontitis with occlusal trauma group had decreased fibrinogen, t-PA, and u-PA expression and plasmin and fibrin degradation product levels, as well as increased plasminogen levels. CONCLUSION: Occlusal trauma promotes excessive fibrin deposition by suppressing the plasminogen/plasmin system, thus exacerbating periodontitis.

8.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(3): 394-402, 2024 Jun 01.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39049661

RESUMEN

The clinical demand for occlusal reconstruction increases rapidly with increasing number of patients who have lost their normal occlusion because of tooth wear and dentition defects. Occlusal reconstruction is a special type of restoration defined as a comprehensive restoration of the function of the stomatognathic system by reestablishing a uniform and stable occlusal relationship between the upper and lower dentitions. Occlusal function analysis is an important part of occlusal reconstruction to achieve accurate restoration design and adjustment. Digital occlusal function analysis was conducted to monitor the movement of the mandible and obtain related data for the parameter design of occlusal reconstruction. Preoperative design, intraoperative adjustment, and postoperative verification were achieved, thereby improving the efficiency and accuracy of occlusal reconstruction.


Asunto(s)
Oclusión Dental , Humanos , Mandíbula
10.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999979

RESUMEN

This study presents a pioneering synthesis of a direct Z-scheme Y2TmSbO7/GdYBiNbO7 heterojunction photocatalyst (YGHP) using an ultrasound-assisted hydrothermal synthesis technique. Additionally, novel photocatalytic nanomaterials, namely Y2TmSbO7 and GdYBiNbO7, were fabricated via the hydrothermal fabrication technique. A comprehensive range of characterization techniques, including X-ray diffractometry, Fourier-transform infrared spectroscopy, Raman spectroscopy, UV-visible spectrophotometry, X-ray photoelectron spectroscopy, transmission electron microscopy, X-ray energy-dispersive spectroscopy, fluorescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance, was employed to thoroughly investigate the morphological features, composition, chemical, optical, and photoelectric properties of the fabricated samples. The photocatalytic performance of YGHP was assessed in the degradation of the pesticide acetochlor (AC) and the mineralization of total organic carbon (TOC) under visible light exposure, demonstrating eximious removal efficiencies. Specifically, AC and TOC exhibited removal rates of 99.75% and 97.90%, respectively. Comparative analysis revealed that YGHP showcased significantly higher removal efficiencies for AC compared to the Y2TmSbO7, GdYBiNbO7, or N-doped TiO2 photocatalyst, with removal rates being 1.12 times, 1.21 times, or 3.07 times higher, respectively. Similarly, YGHP demonstrated substantially higher removal efficiencies for TOC than the aforementioned photocatalysts, with removal rates 1.15 times, 1.28 times, or 3.51 times higher, respectively. These improvements could be attributed to the Z-scheme charge transfer configuration, which preserved the preferable redox capacities of Y2TmSbO7 and GdYBiNbO7. Furthermore, the stability and durability of YGHP were confirmed, affirming its potential for practical applications. Trapping experiments and electron spin resonance analyses identified active species generated by YGHP, namely •OH, •O2-, and h+, allowing for comprehensive analysis of the degradation mechanisms and pathways of AC. Overall, this investigation advances the development of efficient Z-scheme heterostructural materials and provides valuable insights into formulating sustainable remediation strategies for combatting AC contamination.


Asunto(s)
Luz , Toluidinas , Catálisis , Toluidinas/química , Fotólisis , Contaminantes Químicos del Agua/química , Procesos Fotoquímicos , Espectroscopía de Fotoelectrones , Gadolinio/química
11.
Cell Death Dis ; 15(6): 460, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942760

RESUMEN

Lung cancer stands as the leading cause of mortality among all types of tumors, with over 40% of cases being lung adenocarcinoma (LUAD). Family with sequence similarity 83 member A (FAM83A) emerges as a notable focus due to its frequent overexpression in LUAD. Despite this, the precise role of FAM83A remains elusive. This study addresses this gap by unveiling the crucial involvement of FAM83A in maintaining the cancer stem cell-like (CSC-like) phenotype of LUAD. Through a global proteomics analysis, the study identifies human epidermal growth factor receptor 2 (HER2 or ErbB2) as a crucial target of FAM83A. Mechanistically, FAM83A facilitated ErbB2 expression at the posttranslational modification level via the E3 ubiquitin ligase STUB1 (STIP1-homologous U-Box containing protein 1). More importantly, the interaction between FAM83A and ErbB2 at Arg241 promotes calcineurin (CALN)-mediated dephosphorylation of ErbB2, followed by inhibition of STUB1-mediated ubiquitin-proteasomal ErbB2 degradation. The maintenance of the CSC-like phenotype by FAM83A, achieved through the posttranslational regulation of ErbB2, offers valuable insights for identifying potential therapeutic targets for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Proteínas de Neoplasias , Células Madre Neoplásicas , Fenotipo , Receptor ErbB-2 , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Línea Celular Tumoral , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Femenino
13.
J Am Heart Assoc ; 13(13): e034805, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38934866

RESUMEN

BACKGROUND: The regenerative capacity of the adult mammalian hearts is limited. Numerous studies have explored mechanisms of adult cardiomyocyte cell-cycle withdrawal. This translational study evaluated the effects and underlying mechanism of rhCHK1 (recombinant human checkpoint kinase 1) on the survival and proliferation of cardiomyocyte and myocardial repair after ischemia/reperfusion injury in swine. METHODS AND RESULTS: Intramyocardial injection of rhCHK1 protein (1 mg/kg) encapsulated in hydrogel stimulated cardiomyocyte proliferation and reduced cardiac inflammation response at 3 days after ischemia/reperfusion injury, improved cardiac function and attenuated ventricular remodeling, and reduced the infarct area at 28 days after ischemia/reperfusion injury. Mechanistically, multiomics sequencing analysis demonstrated enrichment of glycolysis and mTOR (mammalian target of rapamycin) pathways after rhCHK1 treatment. Co-Immunoprecipitation (Co-IP) experiments and protein docking prediction showed that CHK1 (checkpoint kinase 1) directly bound to and activated the Serine 37 (S37) and Tyrosine 105 (Y105) sites of PKM2 (pyruvate kinase isoform M2) to promote metabolic reprogramming. We further constructed plasmids that knocked out different CHK1 and PKM2 amino acid domains and transfected them into Human Embryonic Kidney 293T (HEK293T) cells for CO-IP experiments. Results showed that the 1-265 domain of CHK1 directly binds to the 157-400 amino acids of PKM2. Furthermore, hiPSC-CM (human iPS cell-derived cardiomyocyte) in vitro and in vivo experiments both demonstrated that CHK1 stimulated cardiomyocytes renewal and cardiac repair by activating PKM2 C-domain-mediated cardiac metabolic reprogramming. CONCLUSIONS: This study demonstrates that the 1-265 amino acid domain of CHK1 binds to the 157-400 domain of PKM2 and activates PKM2-mediated metabolic reprogramming to promote cardiomyocyte proliferation and myocardial repair after ischemia/reperfusion injury in adult pigs.


Asunto(s)
Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Modelos Animales de Enfermedad , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Humanos , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Células HEK293 , Porcinos , Reprogramación Celular , Proteínas de Unión a Hormona Tiroide , Regeneración , Unión Proteica , Sus scrofa , Remodelación Ventricular/fisiología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Metabolismo Energético/efectos de los fármacos , Hormonas Tiroideas/metabolismo , Reprogramación Metabólica
14.
J Med Virol ; 96(6): e29724, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38837426

RESUMEN

Although the burden of the human immunodeficiency virus (HIV) in the Asia-Pacific region is increasingly severe, comprehensive evidence of the burden of HIV is scarce. We aimed to report the burden of HIV in people aged 15-79 years from 1990 to 2019 using data from the Global Burden of Disease Study (GBD) 2019. We analyzed rates of age-standardized disability-adjusted life years (ASDR), age-standardized mortality (ASMR), and age-standardized incidence (ASIR) in our age-period-cohort analysis by sociodemographic index (SDI). According to HIV reports in 2019 from 29 countries in the Asia-Pacific region, the low SDI group in Papua New Guinea had the highest ASDR, ASMR, and ASIR. From 1990 to 2019, the ASDR, ASIR, and ASMR of persons with acquired immune deficiency syndrome (AIDS) increased in 21 (72%) of the 29 countries in the Asia-Pacific region. During the same period, the disability-adjusted life years (DALYs) of AIDS patients in the low SDI group in the region grew the fastest, particularly in Nepal. The incidence of HIV among individuals aged 20-30 years in the low-middle SDI group was higher than that of those in the other age groups. In 2019, unsafe sex was the main cause of HIV-related ASDR in the region's 29 countries, followed by drug use. The severity of the burden of HIV/AIDS in the Asia-Pacific region is increasing, especially among low SDI groups. Specific public health policies should be formulated based on the socioeconomic development level of each country to alleviate the burden of HIV/AIDS.


Asunto(s)
Carga Global de Enfermedades , Infecciones por VIH , Humanos , Adulto , Persona de Mediana Edad , Adolescente , Adulto Joven , Infecciones por VIH/epidemiología , Infecciones por VIH/mortalidad , Masculino , Femenino , Anciano , Carga Global de Enfermedades/tendencias , Asia/epidemiología , Estudios de Cohortes , Incidencia , Años de Vida Ajustados por Discapacidad , Costo de Enfermedad
15.
PLoS One ; 19(6): e0305903, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38913698

RESUMEN

BACKGROUND: Pulmonary fibrosis (PF) is a common interstitial pneumonia disease, also occurred in post-COVID-19 survivors. The mechanism underlying the anti-PF effect of Qing Fei Hua Xian Decotion (QFHXD), a traditional Chinese medicine formula applied for treating PF in COVID-19 survivors, is unclear. This study aimed to uncover the mechanisms related to the anti-PF effect of QFHXD through analysis of network pharmacology and experimental verification. METHODS: The candidate chemical compounds of QFHXD and its putative targets for treating PF were achieved from public databases, thereby we established the corresponding "herb-compound-target" network of QFHXD. The protein-protein interaction network of potential targets was also constructed to screen the core targets. Furthermore, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to predict targets, and pathways, then validated by in vivo experiments. RESULTS: A total of 188 active compounds in QFHXD and 50 target genes were identified from databases. The key therapeutic targets of QFHXD, such as PI3K/Akt, IL-6, TNF, IL-1ß, STAT3, MMP-9, and TGF-ß1 were identified by KEGG and GO analysis. Anti-PF effects of QFHXD (in a dose-dependent manner) and prednisone were confirmed by HE, Masson staining, and Sirius red staining as well as in vivo Micro-CT and immunohistochemical analysis in a rat model of bleomycin-induced PF. Besides, QFXHD remarkably inhibits the activity of PI3K/Akt/NF-κB and TGF-ß1/Smad2/3. CONCLUSIONS: QFXHD significantly attenuated bleomycin-induced PF via inhibiting inflammation and epithelial-mesenchymal transition. PI3K/Akt/NF-κB and TGF-ß1/Smad2/3 pathways might be the potential therapeutic effects of QFHXD for treating PF.


Asunto(s)
Medicamentos Herbarios Chinos , Farmacología en Red , Mapas de Interacción de Proteínas , Fibrosis Pulmonar , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Animales , Ratas , Masculino , Mapas de Interacción de Proteínas/efectos de los fármacos , Bleomicina , Factor de Crecimiento Transformador beta1/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Humanos , COVID-19/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Medicina Tradicional China/métodos , Tratamiento Farmacológico de COVID-19
16.
J Inflamm Res ; 17: 3753-3770, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882183

RESUMEN

Background: Osteoarthritis (OA) is a major cause of human disability. Despite receiving treatment, patients with the middle and late stage of OA have poor survival outcomes. Therefore, within the framework of predictive, preventive, and personalized medicine (PPPM/3PM), early personalized diagnosis of OA is particularly prominent. PPPM aims to accurately identify disease by integrating multiple omic techniques; however, the efficiency of currently available methods and biomarkers in predicting and diagnosing OA should be improved. Disulfidptosis, a novel programmed cell death mechanism and appeared in particular metabolic status, plays a mysterious characteristic in the occurrence and development of OA, which warrants further investigation. Methods: In this study, we integrated three public datasets from the Gene Expression Omnibus (GEO) database, including 26 OA samples and 20 normal samples. Via a series of bioinformatic analysis and machine learning, we identified the diagnostic biomarkers and several subtypes of OA. Moreover, the expression of these biomarkers were verified in our in-house cohort and the single cell dataset. Results: Three significant regulators of disulfidptosis (NCKAP1, OXSM, and SLC3A2) were identified through differential expression analysis and machine learning. And a nomogram constructed based on these three regulators exhibited ideal efficiency in predicting early- and late-stage OA. Furthermore, based on the expression of three regulators, we identified two disulfidptosis-related subtypes of OA with different infiltration of immune cells and personalized expression level of immune checkpoints. Notably, the expression of the three regulators was demonstrated in a single-cell RNA profile and verified in the synovial tissue in our in-house cohort including 6 OA patients and 6 normal people. Finally, an efficient disulfidptosis-mediated diagnostic model was constructed for OA, with the AUC value of 97.6923% in the training set and 93.3333% and 100% in two validation sets. Conclusion: Overall, with regard to PPPM, this study provided novel insights into the role of disulfidptosis regulators in the personalized diagnosis and treatment of OA.

17.
Nutrients ; 16(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38794748

RESUMEN

The high prevalence of constipation after fracture surgery brings intolerable discomfort to patients on the one hand, and affects post-surgery nutrient absorption on the other hand, resulting in poor prognosis. Given the acknowledged probiotic properties of Lactobacillus rhamnosus, 100 fracture patients with post-surgery constipation were centrally enrolled and administered orally with L. rhamnosus JYLR-127 to assess the efficacy of probiotic-adjuvant therapy in alleviating post-fracture constipation symptoms. The results showed that L. rhamnosus JYLR-127 improved fecal properties, promoted gastrointestinal recovery, and relieved constipation symptoms, which were mainly achieved by elevating Firmicutes (p < 0.01) and descending Bacteroidetes (p < 0.001), hence remodeling the disrupted intestinal microecology. In addition, blood routine presented a decrease in C-reactive protein levels (p < 0.05) and an increase in platelet counts (p < 0.05) after probiotic supplementation, prompting the feasibility of L. rhamnosus JYLR-127 in anti-inflammation, anti-infection and hemorrhagic tendency prevention after fracture surgery. Our study to apply probiotics in ameliorating constipation after fracture surgery is expected to bless the bothered patients, and provide broader application scenarios for L. rhamnosus preparations.


Asunto(s)
Estreñimiento , Fracturas Óseas , Lacticaseibacillus rhamnosus , Complicaciones Posoperatorias , Probióticos , Humanos , Estreñimiento/terapia , Probióticos/uso terapéutico , Probióticos/administración & dosificación , Femenino , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/etiología , Método Simple Ciego , Fracturas Óseas/cirugía , Fracturas Óseas/complicaciones , Adulto , Microbioma Gastrointestinal , Heces/microbiología , Anciano , Resultado del Tratamiento
18.
Exp Gerontol ; 192: 112460, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772192

RESUMEN

OBJECTIVE: Knee Osteoarthritis (KOA) is a debilitating degenerative joint ailment afflicting millions of patients. Numerous studies have assessed the efficacy of mesenchymal stem cells (MSCs) derived from various sources for KOA treatment, yet direct comparisons are scarce and inconsistent. Furthermore, network meta-analysis (NMA) conclusions require updating, while the safety of MSCs therapy remains contentious. This study evaluates therapeutic approaches involving MSCs from different sources in patients with KOA through randomized controlled trials (RCTs) and cohort studies. The objective is to compare the effectiveness and safety of MSCs strategies from various sources for KOA treatment. METHODS: A systematic literature review was conducted to identify RCTs and cohort studies comparing different sources of MSCs in KOA patients. A randomized effects network meta-analysis was used to concurrently evaluate both direct and indirect comparisons across all protocols. RESULTS: The NMA included 16 RCTS and reported 1005 participants. Adipose-derived mesenchymal stem cells (AD-MSCs) were the most effective treatment, showing significant improvements in the Visual Analogue Scale (VAS), the Short Form 36 (SF-36 scale), the International Knee Literature Committee Knee Evaluation Scale (IKDC subjective scores), and the Knee Injury and OA Outcome Score (KOOS). The probabilities are P = 85.3, P = 70.5, P = 88 and P = 87, respectively. Compared with placebo, AD-MSCs resulted in a VAS Score (SMD 0.97; 95%CI 0.37, 1.57), IKDC subjective scores (SMD -0.71; 95%CI -1.20, -0.21) was significantly reduced. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) showed significant improvements in the University of Western Ontario and McMaster University OA (WOMAC) (P = 91.4). Compared with placebo, UC-MSCs had a higher WOMAC Score (SMD 1.65; 95%CI 0.27, 3.03) and ranked first. Compared with MSCs, placebo emerged as the safer option (P = 74.9), with a notable reduction in AEs associated with HA treatment (RR 0.77; 95%CI 0.61, 0.97). AD-MSCs were found to have the least favorable impact on AEs with a probability of P = 13.3. CONCLUSIONS: This network meta-analysis established that MSCs offer pain relief and enhance various knee scores in KOA patients compared to conventional treatment. It also identifies other therapeutic avenues warranting further exploration through high-quality studies. Nonetheless, it underscores the necessity to emphasize the potential complications and safety concerns associated with MSCs.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Metaanálisis en Red , Osteoartritis de la Rodilla , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Tejido Adiposo/citología , Trasplante de Células Madre Mesenquimatosas/métodos , Osteoartritis de la Rodilla/terapia , Resultado del Tratamiento
19.
Cancer Med ; 13(10): e7303, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38800967

RESUMEN

Osteosarcoma (OS) is a prevalent bone solid malignancy that primarily affects adolescents, particularly boys aged 14-19. This aggressive form of cancer often leads to deadly lung cancer due to its high migration ability. Experimental evidence suggests that programmed cell death (PCD) plays a crucial role in the development of osteosarcoma. Various forms of PCD, including apoptosis, ferroptosis, autophagy, necroptosis, and pyroptosis, contribute significantly to the progression of osteosarcoma. Additionally, different signaling pathways such as STAT3/c-Myc signal pathway, JNK signl pathway, PI3k/AKT/mTOR signal pathway, WNT/ß-catenin signal pathway, and RhoA signal pathway can influence the development of osteosarcoma by regulating PCD in osteosarcoma cell. Therefore, targeting PCD and the associated signaling pathways could offer a promising therapeutic approach for treating osteosarcoma.


Asunto(s)
Apoptosis , Neoplasias Óseas , Osteosarcoma , Transducción de Señal , Osteosarcoma/patología , Osteosarcoma/terapia , Osteosarcoma/metabolismo , Humanos , Neoplasias Óseas/patología , Neoplasias Óseas/terapia , Neoplasias Óseas/metabolismo , Autofagia , Ferroptosis , Necroptosis , Animales
20.
Sci Rep ; 14(1): 9496, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664484

RESUMEN

Disposable bamboo chopsticks (DBCs) are difficult to recycle, which inevitably cause secondary pollution. Based on energy and environmental issues, we propose a facile strategy to fabricate floatable photocatalyst (fPC) coated onto DBCs, which can be flexibly used in water purification. The photocatalyst of titania and titanium carbide on bamboo (TiO2/TiC@b) was successfully constructed from TiC-Ti powders and DBCs using a coating technique followed heat treatment in carbon powder, and the fPC exhibited excellent photocatalytic activity under visible light irradation. The analysis results indicate that rutile TiO2 forms on TiC during heat treatment, achieving a low-density material with an average value of approximately 0.5233 g/cm3. The coatings of TiO2/TiC on the bamboo are firm and uniform, with a particle size of about 20-50 nm. XPS results show that a large amount of oxygen vacancies is generated, due to the reaction atmosphere of more carbon and less oxygen, further favoring to narrowing the band gap of TiO2. Furthermore, TiO2 formed on residual TiC would induce the formation of a heterojunction, which effectively inhibits the photogenerated electron-hole recombination via the charge transfer effect. Notably, the degradation of dye Rhodamine B (Rh.B) is 62.4% within 3 h, while a previous adsorption of 36.0% for 1 h. The excellent photocatalytic performance of TiO2/TiC@b can be attributed to the enhanced reaction at the water/air interface due to the reduced light loss in water, improved visible-light response, increased accessible area and charge transfer effect. Our findings show that the proposed strategy achieves a simple, low-cost, and mass-producible method to fabricate fPC onto the used DBCs, which is expected to applied in multiple fields, especially in waste recycling and water treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA