Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1219856, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621887

RESUMEN

BRI1 EMS SUPPRESSOR1 (BES1) family members are crucial downstream regulators that positively mediate brassinosteroid signaling, playing vital roles in the regulation of plant stress responses and anther development in Arabidopsis. Importantly, the expression profiles of wheat (Triticum aestivum L.) BES1 genes have not been analyzed comprehensively and systematically in response to abiotic stress or during anther development. In this study, we identified 23 BES1-like genes in common wheat, which were unevenly distributed on 17 out of 21 wheat chromosomes. Phylogenetic analysis clustered the BES1 genes into four major clades; moreover, TaBES1-3A2, TaBES1-3B2 and TaBES1-3D2 belonged to the same clade as Arabidopsis BES1/BZR1 HOMOLOG3 (BEH3) and BEH4, which participate in anther development. The expression levels of 23 wheat BES1 genes were assessed using real-time quantitative PCR under various abiotic stress conditions (drought, salt, heat, and cold), and we found that most TaBES1-like genes were downregulated under abiotic stress, particularly during drought stress. We therefore used drought-tolerant and drought-sensitive wheat cultivars to explore TaBES1 expression patterns under drought stress. TaBES1-3B2 and TaBES1-3D2 expression was high in drought-tolerant cultivars but substantially repressed in drought-sensitive cultivars, while TaBES1-6D presented an opposite pattern. Among genes preferentially expressed in anthers, TaBES1-3B2 and TaBES1-3D2 expression was substantially downregulated in thermosensitive genic male-sterile wheat lines compared to common wheat cultivar under sterile conditions, while we detected no obvious differences under fertile conditions. This result suggests that TaBES1-3B2 and TaBES1-3D2 might not only play roles in regulating drought tolerance, but also participate in low temperature-induced male sterility.

2.
Biomed Res Int ; 2020: 9708324, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33224986

RESUMEN

OVATE family proteins (OFPs) are plant-specific transcription factors that play important roles in plant development. Although common wheat (Triticum aestivum L.) is a major staple food worldwide, OFPs have not been systematically analyzed in this important crop. Here, we performed a genome-wide survey of OFP genes in wheat and identified 100 genes belonging to 34 homoeologous groups. Arabidopsis thaliana, rice (Oryza sativa), and wheat OFP genes were divided into four subgroups based on their phylogenetic relationships. Structural analysis indicated that only four TaOFPs contain introns. We mapped the TaOFP genes onto the wheat chromosomes and determined that TaOFP17 was duplicated in this crop. A survey of cis-acting elements along the promoter regions of TaOFP genes suggested that subfunctionalization of homoeologous genes might have occurred during evolution. The TaOFPs were highly expressed in wheat, with tissue- or organ-specific expression patterns. In addition, these genes were induced by various hormone and stress treatments. For instance, TaOPF29a-A was highly expressed in roots in response to drought stress. Wheat plants overexpressing TaOPF29a-A had longer roots and higher dry weights than nontransgenic plants under drought conditions, suggesting that this gene improves drought tolerance. Our findings provide a starting point for further functional analysis of this important transcription factor family and highlight the potential of using TaOPF29a-A to genetically engineer drought-tolerant crops.


Asunto(s)
Proteínas de Plantas/genética , Triticum/fisiología , Arabidopsis/genética , Mapeo Cromosómico , Sequías , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Familia de Multigenes , Oryza/genética , Filogenia , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Estrés Fisiológico/genética , Factores de Transcripción/genética , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA