Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(3): e14002, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36923823

RESUMEN

Globally, efforts are being made to identify land use types that could potentially improve carbon sequestration to mitigate climate change and global warming and ensure sustainable agriculture. The study was conducted at the University of Cape Coast Teaching and Research Farm to evaluate the influence of different land use types on the distribution of SOC at different soil depths. A stratified random sampling technique was used to collect a total of 180 soil samples at 0-15 cm, 15-30 cm and 30-45 cm depths from arable, fallow, pasture and plantation fields, covering about 24.52 ha. The physico-chemical properties of the soil samples were determined using standard laboratory methods and the data generated was analysed using Minitab 19. The results showed that land use systems significantly (p ≤ 0.05) affected the distribution of the physico-chemical properties of the soil. The SOC content under the different land use types was in the order; of plantation (2.57%) > arable (1.99%) > pasture (1.55%) > fallow (1.14%). The plantation field significantly (p ≤ 0.05) had higher SOC compared to the other land use types and that could be adopted as a better carbon store that can help in mitigating climate change. The mean values of SOC content and most of the other physico-chemical properties determined were generally concentrated in the topsoil (0-15 cm depth) but decreased with depth, so managing these fields properly can equally improve the availability of these nutrients towards sustainable agriculture.

2.
BMC Res Notes ; 13(1): 397, 2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32854759

RESUMEN

OBJECTIVES: The low fertility of highly weathered soils has been a major problem for resource-constrained smallholder farmers. In central Uganda, smallholder farmers have been collecting termite mound soils anywhere around the termite mound to improve their soil fertility. However, no studies have been conducted on which sections of the termite mounds consist of high soil nutrients. This study was conducted to assess selected major soil essential plant nutrients of soils collected from the top of the mound (TPMS), and the basal part of the mound (BPMS). The surrounding soil samples were collected from five, fifteen, and thirty meters away from the mound (TMSS1, TMSS2, and TMSS3 respectively), covering ten termite mounds in five different maize fields in central Uganda. RESULTS: TPMS and BPMS had significant (P-value < 0.05) higher N, P, K, OC, Ca and Mg levels than TMSS1, TMSS2, and TMSS3. However, OC levels in BPMS was higher than TPMS. On the whole, termite mounds are beneficial as a source for essential plant nutrients. It will be best if smallholder farmers could collect the termite mound soils from the top and the basal part of the mound to improve the fertility of their soil.


Asunto(s)
Isópteros , Suelo , Animales , Granjas , Microbiología del Suelo , Uganda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA