Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 617(7959): 132-138, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37076627

RESUMEN

Plant membrane transporters controlling metabolite distribution contribute key agronomic traits1-6. To eliminate anti-nutritional factors in edible parts of crops, the mutation of importers can block the accumulation of these factors in sink tissues7. However, this often results in a substantially altered distribution pattern within the plant8-12, whereas engineering of exporters may prevent such changes in distribution. In brassicaceous oilseed crops, anti-nutritional glucosinolate defence compounds are translocated to the seeds. However, the molecular targets for export engineering of glucosinolates remain unclear. Here we identify and characterize members of the USUALLY MULTIPLE AMINO ACIDS MOVE IN AND OUT TRANSPORTER (UMAMIT) family-UMAMIT29, UMAMIT30 and UMAMIT31-in Arabidopsis thaliana as glucosinolate exporters with a uniport mechanism. Loss-of-function umamit29 umamit30 umamit31 triple mutants have a very low level of seed glucosinolates, demonstrating a key role for these transporters in translocating glucosinolates into seeds. We propose a model in which the UMAMIT uniporters facilitate glucosinolate efflux from biosynthetic cells along the electrochemical gradient into the apoplast, where the high-affinity H+-coupled glucosinolate importers GLUCOSINOLATE TRANSPORTERS (GTRs) load them into the phloem for translocation to the seeds. Our findings validate the theory that two differently energized transporter types are required for cellular nutrient homeostasis13. The UMAMIT exporters are new molecular targets to improve nutritional value of seeds of brassicaceous oilseed crops without altering the distribution of the defence compounds in the whole plant.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Glucosinolatos , Proteínas de Transporte de Membrana , Semillas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Homeostasis , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Floema/metabolismo , Reproducibilidad de los Resultados , Semillas/metabolismo
2.
J Exp Bot ; 69(1): 59-68, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29036447

RESUMEN

The ability to ward off filamentous pathogens, such as powdery mildew fungi, is one of the best studied examples of membrane trafficking-dependent disease resistance in plants. Here, papilla formation at the site of attack is essential for the pre-invasive immunity, whereas the encasement can hamper disease post-invasively. Exosomes containing antifungal peptides and small RNAs are thought to play a vital role in forming papillae and encasements that block fungal growth. While exosomes are well described in mammals, and have been shown to play important roles in cell-cell communication regulating development and disease, their function is not well-known in plants. In this review, we focus on some of the recent discoveries on plant exosomes and try to link this information with our current understanding of how plants use this form of unconventional secretion to acquire this durable and effective form of resistance.


Asunto(s)
Comunicación Celular , Resistencia a la Enfermedad/fisiología , Exosomas/metabolismo , Enfermedades de las Plantas/microbiología , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA