Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 245: 114207, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39243706

RESUMEN

Advancement in the development of new materials with theranostic and phototherapeutic potential along with receptiveness to external stimuli has been persistently inspiring oncology research. Herein, titanium carbide-based MXene quantum dots (FHMQDs) have been synthesized and modified to take advantage of stimuli-responsive behavior and target specificity for breast cancer cells. With a size of around 3 nm, the developed FHMQDs demonstrate high fluorescent emission at around 460 nm. With ∼90 % encapsulation efficiency of doxorubicin (DOX), the developed system also offers rapid DOX release behavior when encountering an acidic pH (5.4). Further, the in vitro assessment of the developed FHMQDs on MDA-MB 231 breast cancer cells presents excellent target specificity to cancer cells which was reflected by its high cytotoxicity against cancer cells. Additionally, the outstanding photodynamic efficiency of FHMQDs due to excessive Reactive Oxygen Species (ROS) generating ability along with apoptosis promoting capability of FHMQDs in cancer cells demonstrates a synergistic approach in cancer theranostics. Encouragingly, the fabricated FHMQDs also exhibited fluorescent labelling and bioimaging capacity which makes it an incredible platform that ensures theranostic excellence in breast cancer research.

2.
Mol Neurobiol ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230868

RESUMEN

Mitochondria are central to cellular energy production, and their dysfunction is a major contributor to oxidative stress and chronic inflammation, pivotal factors in aging, and related diseases. With aging, mitochondrial efficiency declines, leading to an increase in ROS and persistent inflammatory responses. Therapeutic interventions targeting mitochondrial health show promise in mitigating these detrimental effects. Antioxidants such as MitoQ and MitoVitE, and supplements like coenzyme Q10 and NAD + precursors, have demonstrated potential in reducing oxidative stress. Additionally, gene therapy aimed at enhancing mitochondrial function, alongside lifestyle modifications such as regular exercise and caloric restriction can ameliorate age-related mitochondrial decline. Exercise not only boosts mitochondrial biogenesis but also improves mitophagy. Enhancing mitophagy is a key strategy to prevent the accumulation of dysfunctional mitochondria, which is crucial for cellular homeostasis and longevity. Pharmacological agents like sulforaphane, SS-31, and resveratrol indirectly promote mitochondrial biogenesis and improve cellular resistance to oxidative damage. The exploration of mitochondrial therapeutics, including emerging techniques like mitochondrial transplantation, offers significant avenues for extending health span and combating age-related diseases. However, translating these findings into clinical practice requires overcoming challenges in precisely targeting dysfunctional mitochondria and optimizing delivery mechanisms for therapeutic agents. Continued research is essential to refine these approaches and fully understand the interplay between mitochondrial dynamics and aging.

3.
Ageing Res Rev ; 100: 102450, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39134179

RESUMEN

Diabetic encephalopathy (DE), a significant micro-complication of diabetes, manifests as neurochemical, structural, behavioral, and cognitive alterations. This condition is especially dangerous for the elderly because aging raises the risk of neurodegenerative disorders and cognitive impairment, both of which can be made worse by diabetes. Despite its severity, diagnosis of this disease is challenging, and there is a paucity of information on its pathogenesis. The pivotal roles of various cellular pathways, activated or influenced by hyperglycemia, insulin sensitivity, amyloid accumulation, tau hyperphosphorylation, brain vasculopathy, neuroinflammation, and oxidative stress, are widely recognized for contributing to the potential causes of diabetic encephalopathy. We also reviewed current pharmacological strategies for DE encompassing a comprehensive approach targeting metabolic dysregulations and neurological manifestations. Antioxidant-based therapies hold promise in mitigating oxidative stress-induced neuronal damage, while anti-diabetic drugs offer neuroprotective effects through diverse mechanisms, including modulation of insulin signaling pathways and neuroinflammation. Additionally, tissue engineering and nanomedicine-based approaches present innovative strategies for targeted drug delivery and regenerative therapies for DE. Despite significant progress, challenges remain in translating these therapeutic interventions into clinical practice, including long-term safety, scalability, and regulatory approval. Further research is warranted to optimize these approaches and address remaining gaps in the management of DE and associated neurodegenerative disorders.


Asunto(s)
Hipoglucemiantes , Humanos , Animales , Hipoglucemiantes/uso terapéutico , Complicaciones de la Diabetes/terapia , Complicaciones de la Diabetes/metabolismo , Estrés Oxidativo/fisiología , Encefalopatías/terapia , Encefalopatías/etiología , Encefalopatías/metabolismo
4.
Ageing Res Rev ; 100: 102411, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986845

RESUMEN

Alzheimer's Disease (AD) is a challenging neurodegenerative condition, with overwhelming implications for affected individuals and healthcare systems worldwide. Animal models have played a crucial role in studying AD pathogenesis and testing therapeutic interventions. Remarkably, studies on the genetic factors affecting AD risk, such as APOE and TREM2, have provided valuable insights into disease mechanisms. Early diagnosis has emerged as a crucial factor in effective AD management, as demonstrated by clinical studies emphasizing the benefits of initiating treatment at early stages. Novel diagnostic technologies, including RNA sequencing of microglia, offer promising avenues for early detection and monitoring of AD progression. Therapeutic strategies remain to evolve, with a focus on targeting amyloid beta (Aß) and tau pathology. Advances in animal models, such as APP-KI mice, and the advancement of anti-Aß drugs signify progress towards more effective treatments. Therapeutically, the focus has shifted towards intricate approaches targeting multiple pathological pathways simultaneously. Strategies aimed at reducing Aß plaque accumulation, inhibiting tau hyperphosphorylation, and modulating neuroinflammation are actively being explored, both in preclinical models and clinical trials. While challenges continue in developing validated animal models and translating preclinical findings to clinical success, the continuing efforts in understanding AD at molecular, cellular, and clinical levels offer hope for improved management and eventual prevention of this devastating disease.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Diagnóstico Precoz , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Animales , Humanos , Péptidos beta-Amiloides/metabolismo , Ratones
5.
Int J Biol Macromol ; 276(Pt 2): 133945, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029821

RESUMEN

Developing innovative films and coatings is paramount for extending the shelf life of numerous food products and augmenting the barrier and antimicrobial properties of food packaging materials. Many synthetic chemicals used in active packaging and food storage have the potential to leach into food, posing long-term health risks. It is imperative for active packaging materials to inherently possess biological protective properties to ensure food quality and safety throughout its storage. Bacteriophages, or simply phages, are bacteria-eating viruses that serve as promising natural biocontrol agents and antimicrobial bioadditives in food packaging materials, specifically targeting bacterial foodborne pathogens. These phages are generally recognized as safe (GRAS) by regulatory authorities for food safety applications. They exhibit targeted action against various Gram-positive and -negative foodborne pathogens, including Bacillus spp., Campylobacter spp., Escherichia coli, Listeria monocytogenes, Salmonella spp., Shigella spp., and Vibrio spp., associated with foodborne spoilage and illness without affecting the beneficial microbes. Phage cocktails can be applied directly on food surfaces, incorporated into food packaging materials, or utilized during food processing treatments. Unlike chemical agents, phage activity increases proportionally with the rise in pathogenic bacterial populations. Researchers are exploring various packaging materials to deliver phages with broad host range, stability, and viability ensuring their effectiveness in safeguarding various food systems. The effectiveness of phage immobilization or encapsulation on active food packaging materials depends on various factors, including the characteristics of polymers, the choice of solvents, the type of phage, and its loading efficiency. Factors such as the orientation of phage immobilization on substrates, pH, temperature, exposure to carbohydrates and amino acids, exopolysaccharides, lipopolysaccharides, and metals can also influence phage activity. In this review, we comprehensively discuss the various active packaging systems utilizing bacteriophages as natural biocontrols and antimicrobial bioadditives to reduce the incidence of foodborne illness and enhance consumer confidence in the safety of food products.


Asunto(s)
Bacteriófagos , Embalaje de Alimentos , Conservación de Alimentos , Embalaje de Alimentos/métodos , Conservación de Alimentos/métodos , Bacteriófagos/fisiología , Microbiología de Alimentos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Humanos
6.
Int J Biol Macromol ; 275(Pt 1): 133597, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960232

RESUMEN

BACKGROUND: Bone tissue engineering endows alternates to support bone defects/injuries that are circumscribed to undergo orchestrated process of remodeling on its own. In this regard, hydrogels have emerged as a promising platform that can confront irregular defects and encourage in situ bone repair. METHODS: In this study, we aimed to develop a new approach for bone tissue regeneration by developing an alginate based composite hydrogel incorporating selenium doped biphasic calcium phosphate nanoparticles, and retinoic acid. The fabricated hydrogel was physiochemically evaluated for morphological, bonding, and mechanical behavior. Additionally, the biological response of the fabricated hydrogel was evaluated on MC3T3-E1 pre-osteoblast cells. RESULTS: The developed composite hydrogel confers excellent biocompatibility, and osteoconductivity owing to the presence of alginate, and biphasic calcium phosphate, while selenium presents pro osteogenic, antioxidative, and immunomodulatory properties. The hydrogels exhibited highly porous microstructure, superior mechanical attributes, with enhanced calcification, and biomineralization abilities in vitro. SIGNIFICANCE: By combining the osteoconductive properties of biphasic calcium phosphate with multifaceted benefits of selenium and retinoic acid, the fabricated composite hydrogel offers a potential transformation in the landscape of bone defect treatment. This strategy could direct a versatile and effective approach to tackle complex bone injuries/defects and present potential for clinical translation.


Asunto(s)
Alginatos , Regeneración Ósea , Hidrogeles , Selenio , Tretinoina , Regeneración Ósea/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Alginatos/química , Tretinoina/farmacología , Tretinoina/química , Animales , Ratones , Selenio/química , Selenio/farmacología , Osteogénesis/efectos de los fármacos , Hidroxiapatitas/química , Hidroxiapatitas/farmacología , Calcificación Fisiológica/efectos de los fármacos , Inmunomodulación/efectos de los fármacos , Línea Celular , Osteoblastos/efectos de los fármacos , Ingeniería de Tejidos/métodos , Nanopartículas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Andamios del Tejido/química
7.
Int J Nanomedicine ; 19: 5059-5070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836007

RESUMEN

Purpose: The purpose of this study is to address the need for efficient drug delivery with high drug encapsulation efficiency and sustained drug release. We aim to create nanoparticle-loaded microgels for potential applications in treatment development. Methods: We adopted the process of ionic gelation to generate microgels from sodium alginate and carboxymethyl cellulose. These microgels were loaded with doxorubicin-conjugated amine-functionalized zinc ferrite nanoparticles (AZnFe-NPs). The systems were characterized using various techniques. Toxicity was evaluated in MCF-7 cells. In vitro release studies were conducted at different pH levels at 37 oC, with the drug release kinetics being analyzed using various models. Results: The drug encapsulation efficiency of the created carriers was as high as 70%. The nanoparticle-loaded microgels exhibited pH-responsive behavior and sustained drug release. Drug release from them was mediated via a non-Fickian type of diffusion. Conclusion: Given their high drug encapsulation efficiency, sustained drug release and pH-responsiveness, our nanoparticle-loaded microgels show promise as smart carriers for future treatment applications. Further development and research can significantly benefit the field of drug delivery and treatment development.


Asunto(s)
Preparaciones de Acción Retardada , Doxorrubicina , Portadores de Fármacos , Liberación de Fármacos , Compuestos Férricos , Microgeles , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Humanos , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Células MCF-7 , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Microgeles/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Alginatos/química , Aminas/química , Carboximetilcelulosa de Sodio/química , Nanopartículas/química , Zinc/química , Compuestos de Zinc/química , Supervivencia Celular/efectos de los fármacos
8.
Int J Pharm ; 662: 124293, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38823468

RESUMEN

Nanoencapsulation has gained considerable attention because of its unique features and advantages in anticancer drug delivery. Amygdalin (AMY) is an anticancer compound, showing limitations in its applications by low stability. Herein, the inclusion complexes (ICs) of AMY with ß-cyclodextrin (ßCD), and its derivatives such as 2-hydroxypropyl-ßCD (HPßCD) and methyl-ßCD (MßCD) were fabricated. The fabricated AMY/CD-ICs were thoroughly evaluated using Fourier-transform infrared spectroscopy, powder X-ray diffraction, thermogravimetric/differential thermal analysis, proton nuclear magnetic resonance, ultraviolet-visible diffuse reflectance spectroscopy, and photoluminescence techniques. Double reciprocal profile study of the absorption and fluorescence spectra revealed that the AMY formed the ICs with ßCD derivatives at a guest/host stoichiometric ratio of 1/1. The thermal stability of AMY was enhanced as the IC formation aid observed by the shift of thermal degradation temperature of AMY from the range of âˆ¼ 220-250 °C to > 295 °C. Theoretical analyses of the energetic, electronic, and global reactivity parameters of the AMY/CD-ICs were evaluated using the PM3 method. Further assessment of the dissolution diagrams of AMY/CD-ICs revealed a burst release profile. In addition, cell toxicity was evaluated using the MTT assay, and the results showed that AMY/CD-ICs had significantly more efficacious in inhibiting HeLa cancer cells than AMY. These results proved that the IC formations with CDs significantly enhanced the anticancer activity of AMY.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina , Amigdalina , Antineoplásicos , beta-Ciclodextrinas , Humanos , beta-Ciclodextrinas/química , Amigdalina/química , Amigdalina/administración & dosificación , Amigdalina/farmacología , Células HeLa , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , 2-Hidroxipropil-beta-Ciclodextrina/química , Supervivencia Celular/efectos de los fármacos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Femenino , Liberación de Fármacos , Difracción de Rayos X/métodos , Estabilidad de Medicamentos
9.
Discov Nano ; 19(1): 78, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696067

RESUMEN

The present research aimed at green synthesis of Ag nanoparticles (AgNPs) based colorimetric sensor using persimmon leaf extract (PLE) for selective detection of mercuric ion (Hg2+). Optimization of reaction conditions viz. pH, concentration of PLE, time was done and further AgNPs were characterized using UV, IR, FE-SEM, EDX, XRD and TEM analysis. The developed AgNPs were evaluated for the selective colorimetric detection of Hg2+ in aqueous medium and fluorescence imaging of Hg2+ ions in liver cell lines. Later, the antibacterial activity of AgNPs was performed against S. aureus and E. coli. The findings of the study revealed that PLE mediated AgNPs exhibited notable limit of detection up to 0.1 ppb, high efficiency, and stability. The antibacterial study indicated that developed AgNPs has impressive bacterial inhibiting properties against the tested bacterial strains. In conclusion, developed biogenic AgNPs has high selectivity and notable sensitivity towards Hg2+ ions and may be used as key tool water remediation.

10.
Foods ; 13(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731729

RESUMEN

Natural scaffolds have been the cornerstone of tissue engineering for decades, providing ideal environments for cell growth within extracellular matrices. Previous studies have favored animal-derived materials, including collagen, gelatin, and laminin, owing to their superior effects in promoting cell attachment, proliferation, and differentiation compared to non-animal scaffolds, and used immortalized cell lines. However, for cultured meat production, non-animal-derived scaffolds with edible cells are preferred. Our study represents the first research to describe plant-derived, film-type scaffolds to overcome limitations associated with previously reported thick, gel-type scaffolds completely devoid of animal-derived materials. This approach has been employed to address the difficulties of fostering bovine muscle cell survival, migration, and differentiation in three-dimensional co-cultures. Primary bovine myoblasts from Bos Taurus Coreanae were harvested and seeded on alginate (Algi) or corn-derived alginate (AlgiC) scaffolds. Scaffold functionalities, including biocompatibility and the promotion of cell proliferation and differentiation, were evaluated using cell viability assays, immunofluorescence staining, and reverse transcription-quantitative polymerase chain reaction. Our results reveal a statistically significant 71.7% decrease in production time using film-type scaffolds relative to that for gel-type scaffolds, which can be maintained for up to 7 days. Film-type scaffolds enhanced initial cell attachment owing to their flatness and thinness relative to gel-type scaffolds. Algi and AlgiC film-type scaffolds both demonstrated low cytotoxicity over seven days of cell culture. Our findings indicated that PAX7 expression increased 16.5-fold in alginate scaffolds and 22.8-fold in AlgiC from day 1 to day 3. Moreover, at the differentiation stage on day 7, MHC expression was elevated 41.8-fold (Algi) and 32.7-fold (AlgiC), providing initial confirmation of the differentiation potential of bovine muscle cells. These findings suggest that both Algi and AlgiC film scaffolds are advantageous for cultured meat production.

11.
Int J Biol Macromol ; 271(Pt 2): 132374, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754669

RESUMEN

The controlled delivery of the desired bioactive molecules is required to achieve the maximum therapeutic effects with minimum side effects. Biopolymer-based hydrogels are ideal platforms for delivering the desired molecules owing to their superior biocompatibility, biodegradability, and low-immune response. However, the prolonged delivery of the drugs through biopolymer-based hydrogels is restricted due to their weak mechanical stability. We developed mechanically tough and biocompatible hydrogels to address these limitations using carboxymethyl chitosan, sodium alginate, and nanocellulose for sustained drug delivery. The hydrogels were cross-linked through calcium ions to enhance their mechanical strength. Nanocellulose-added hydrogels exhibited improved mechanical strength (Young's modulus; 23.36 â†’ 30.7 kPa, Toughness; 1.39 â†’ 5.65 MJm-3) than pure hydrogels. The composite hydrogels demonstrated increased recovery potential (66.9 â†’ 84.5 %) due to the rapid reformation of damaged polymeric networks. The hydrogels were stable in an aqueous medium and demonstrated reduced swelling potential. The hydrogels have no adverse effects on embryonic murine fibroblast (3 T3), showing their biocompatibility. No bacterial growth was observed in hydrogels-treated groups, indicating their antibacterial characteristics. The sustained drug released was observed from nanocellulose-assisted hydrogel scaffolds compared to the pure polymer hydrogel scaffold. Thus, hydrogels have potential and could be used as a sustained drug carrier.


Asunto(s)
Celulosa , Quitosano , Hidrogeles , Celulosa/química , Celulosa/análogos & derivados , Hidrogeles/química , Ratones , Animales , Quitosano/química , Quitosano/análogos & derivados , Sistemas de Liberación de Medicamentos , Alginatos/química , Materiales Biocompatibles/química , Liberación de Fármacos , Preparaciones de Acción Retardada , Portadores de Fármacos/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Nanopartículas/química
12.
J Biomater Sci Polym Ed ; 35(11): 1706-1725, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38754029

RESUMEN

Biopolymers have the utmost significance in biomedical applications and blending synthetic polymers has shown favorable characteristics versus individual counterparts. The utilization of the blends can be restricted through the use of toxic chemical agents such as initiators or crosslinkers. In this regard, a chemical agent-free ionizing irradiation is a beneficial alternative for preparing the hydrogels for biomedical applications. In this study, carboxymethyl chitosan (CM-CS), guar gum (GG), and poly(vinylpyrrolidone) (PVP) based ternary blends (TB) were crosslinked using various doses of ionizing irradiation to fabricate hydrogels. The prepared hydrogels were characterized for physicochemical properties, swelling analysis, biological assays, and drug delivery applications. Swelling analysis in distilled water revealed that the hydrogels exhibit excellent swelling characteristics. An in vitro cytocompatibility assay showed that the hydrogels have greater than 90% cell viability for the human epithelial cell line and a decreasing cell viability trend for the human alveolar adenocarcinoma cell line. In addition, the prepared hydrogels possessed excellent antibacterial characteristics against gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli). Finally, the release studies of anti-inflammatory Quercus acutissima (QA) loaded hydrogels exhibited more than 80% release in phosphate-buffered saline (pH = 7.4). These findings suggest that TB hydrogels can be used as suitable carrier media for different release systems and biomedical applications.


Asunto(s)
Antibacterianos , Antineoplásicos , Supervivencia Celular , Quitosano , Escherichia coli , Galactanos , Hidrogeles , Mananos , Gomas de Plantas , Povidona , Staphylococcus aureus , Quitosano/química , Quitosano/análogos & derivados , Quitosano/síntesis química , Quitosano/farmacología , Gomas de Plantas/química , Galactanos/química , Hidrogeles/química , Hidrogeles/síntesis química , Hidrogeles/farmacología , Mananos/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Humanos , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Povidona/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Liberación de Fármacos , Células A549
13.
Int J Biol Macromol ; 266(Pt 2): 130910, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547953

RESUMEN

In this study, we developed hydrogels using polyvinyl alcohol (PVA), vanillin (V), and a fungus-derived carboxymethyl chitosan (FC) using a freeze-thaw-based method. These hydrogels were strengthened by bonding, including Schiff's base bonding between V and FC and hydrogen bonding between PVA, FC, and V. The physiological properties of these PFCV hydrogels were characterized by FTIR, TGA, compressive mechanical testing, and rheology and water contact angle measurements. FTIR spectra confirmed the effective integration of FC and V into the PVA network. TGA results showed that FC and V enhanced the thermal stability of PFCV hydrogels. Mechanical tests showed increasing the amount of V reduced mechanical properties but did not alter the elastic character of hydrogels. SEM images displayed a well-interconnected porous structure with excellent swelling capacity. In addition, we examined biological properties using cell-based in vitro studies and performed antibacterial assessments to assess suitability for potential wound dressing applications. Prestoblue™ and live/dead cell analysis strongly supported skin fibroblast attachment and viability, DPPH assays indicated substantial antioxidant activity, and PFCV hydrogels showed enhanced antibacterial effects against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). In summary, incorporating V and FC into PVA hydrogels appears to be attractive for wound dressing applications.


Asunto(s)
Antibacterianos , Vendajes , Benzaldehídos , Quitosano , Quitosano/análogos & derivados , Hidrogeles , Alcohol Polivinílico , Quitosano/química , Quitosano/farmacología , Alcohol Polivinílico/química , Benzaldehídos/química , Benzaldehídos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Congelación , Staphylococcus aureus/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Humanos , Cicatrización de Heridas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Reología
14.
Int J Biol Macromol ; 265(Pt 2): 131025, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513895

RESUMEN

Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 105 Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers. The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion.


Asunto(s)
Quitosano , Nanotubos de Carbono , Humanos , Antibacterianos , Conductividad Eléctrica , Escherichia coli , Hidrogeles/farmacología , Polímeros
15.
Ageing Res Rev ; 96: 102211, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38307424

RESUMEN

Psychedelics have traditionally been used for spiritual and recreational purposes, but recent developments in psychotherapy have highlighted their potential as therapeutic agents. These compounds, which act as potent 5-hydroxytryptamine (5HT) agonists, have been recognized for their ability to enhance neural plasticity through the activation of the serotoninergic and glutamatergic systems. However, the implications of these findings for the treatment of neurodegenerative disorders, particularly dementia, have not been fully explored. In recent years, studies have revealed the modulatory and beneficial effects of psychedelics in the context of dementia, specifically Alzheimer's disease (AD)-related dementia, which lacks a definitive cure. Psychedelics such as N,N-dimethyltryptamine (DMT), lysergic acid diethylamide (LSD), and Psilocybin have shown potential in mitigating the effects of this debilitating disease. These compounds not only target neurotransmitter imbalances but also act at the molecular level to modulate signalling pathways in AD, including the brain-derived neurotrophic factor signalling pathway and the subsequent activation of mammalian target of rapamycin and other autophagy regulators. Therefore, the controlled and dose-dependent administration of psychedelics represents a novel therapeutic intervention worth exploring and considering for the development of drugs for the treatment of AD-related dementia. In this article, we critically examined the literature that sheds light on the therapeutic possibilities and pathways of psychedelics for AD-related dementia. While this emerging field of research holds great promise, further studies are necessary to elucidate the long-term safety, efficacy, and optimal treatment protocols. Ultimately, the integration of psychedelics into the current treatment paradigm may provide a transformative approach for addressing the unmet needs of individuals living with AD-related dementia and their caregivers.


Asunto(s)
Enfermedad de Alzheimer , Alucinógenos , Humanos , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Dietilamida del Ácido Lisérgico/farmacología , Dietilamida del Ácido Lisérgico/uso terapéutico , Psilocibina/farmacología , Psilocibina/uso terapéutico , N,N-Dimetiltriptamina
16.
ACS Appl Bio Mater ; 7(2): 879-891, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38323456

RESUMEN

In this study, a self-healing, adhesive, and superabsorbent film made of gelatin, poly(acrylamide), and boric acid (GelAA) was successfully synthesized using a free radical reaction mechanism. The optimized film showed a remarkable 2865 ± 42% water absorptivity and also exhibited excellent self-healing behavior. The GelAA films were further loaded with silver nanoclusters (AgNCs) and ursodeoxycholic acid (UDC) (loading efficiency = 10%) to develop UDC/Ag/GelAA films. The loading of AgNCs in UDC/Ag/GelAA films helped in exhibiting 99.99 ± 0.01% antibacterial activity against both Gram-positive and Gram-negative bacteria, making them very effective against bacterial infections. Additionally, UDC/Ag/GelAA films had 77.19 ± 0.52% porosity and showed 90% of UDC release in 30 h, which helps in improving the cell proliferation. Our research provides an easy but highly effective process for synthesizing a hydrogel film, which is an intriguing choice for wound healing applications without the use of antibiotics.


Asunto(s)
Resinas Acrílicas , Antibacterianos , Antiinfecciosos , Metilgalactósidos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Gelatina/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Cicatrización de Heridas
17.
Int J Biol Macromol ; 259(Pt 2): 129349, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219934

RESUMEN

Bacteriophages are employed as cost-effective and efficient antibacterial agents to counter the emergence of antibiotic-resistant bacteria and other host bacteria in phage therapy. The increasing incidence of skin wounds is a significant concern in clinical practice, especially considering the limitations of antibiotic therapy. Furthermore, the lack of an effective delivery system that preserves the stability of bacteriophages hampers their clinical implementation. In recent years, there has been a growing amount of research on bacteriophage applications in veterinary and biomedical sciences. In our study, lytic coliphage vB_Eco2571-YU1 was isolated against pathogenic Escherichia coli host bacteria, and hydrogel wound dressing materials were fabricated with marine polysaccharide carrageenan (carr-vB_Eco2571-YU1) for their antibacterial activity. Transmission electron microscopy (TEM) morphology identified it as a Myoviridae coliphage with an icosahedral head length and width of approximately 60 and 56.8 nm, respectively, and a tail length of 119.7 nm. The one-step growth curve of coliphage revealed a latent period of 10 min, a rise period of 15 min, and a burst size of 120 virions per cell. The bacteriolytic activity of unimmobilized coliphages was observed within 2 h; however, strain-specific phage resistance was acquired after 9 h. In contrast, carr-vB_Eco2571-YU1 showed a sharp decline in the growth of bacteria in the log phase after 2 h and did not allow for the acquisition of phage resistance by the E. coli strain. The stability of coliphage under different pH, temperature, osmolarity, detergents, and organic solvents was evaluated. We also studied the long-term storage of carr-vB_Eco2571-YU1 hydrogels at 4 °C and found that the titer value decreased during a time-dependent period of 28 days. These hydrogels were also found to be hemocompatible using a hemolysis assay. The addition of plasticizer (0.6 % (w/v)) to the carrageenan (2 % (w/v)) to prepare carr-vB_Eco2571-YU1 hydrogels showed a decrease in compressive strength with enhanced elasticity. This phage therapy using polymeric immobilization of bacteriophages is a promising next-generation wound dressing biomaterial alternative to conventional wound and skin care management.


Asunto(s)
Bacteriófagos , Carragenina , Escherichia coli , Hidrogeles , Colifagos , Antibacterianos/farmacología , Vendajes
18.
Chem Rec ; 24(1): e202300235, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37753795

RESUMEN

Since the initial MXenes were discovered in 2011, several MXene compositions constructed using combinations of various transition metals have been developed. MXenes are ideal candidates for different applications in energy conversion and storage, because of their unique and interesting characteristics, which included good electrical conductivity, hydrophilicity, and simplicity of large-scale synthesis. Herein, we study the current developments in two-dimensional (2D) MXene nanosheets for energy storage and conversion technologies. First, we discuss the introduction to energy storage and conversion devices. Later, we emphasized on 2D MXenes and some specific properties of MXenes. Subsequently, research advances in MXene-based electrode materials for energy storage such as supercapacitors and rechargeable batteries is summarized. We provide the relevant energy storage processes, common challenges, and potential approaches to an acceptable solution for 2D MXene-based energy storage. In addition, recent advances for MXenes used in energy conversion devices like solar cells, fuel cells and catalysis is also summarized. Finally, the future prospective of growing MXene-based energy conversion and storage are highlighted.

19.
Int J Biol Macromol ; 256(Pt 2): 128364, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000603

RESUMEN

Addressing major bone injuries is a challenge in bone regeneration, necessitating innovative 3D hydrogel-based therapeutic approaches to enhance scaffold properties for better bioactivity. Bacterial cellulose (BC) is an excellent scaffold for bone tissue engineering due to its biocompatibility, high porosity, substantial surface area, and remarkable mechanical strength. However, its practical application is limited due to a lack of inherent osteogenic activity and biomineralization ability. In this study, we synthesized bone-like apatite in biocompatible BC hydrogel by introducing phosphate groups. Hydrogels were prepared using fibrous BC, acrylamide (AM), and bis [2-methacryloyloxy] ethyl phosphate (BMEP) as a crosslinker through free radical polymerization (P-BC-PAM). P-BC-PAM hydrogels exhibited outstanding compressive mechanical properties, highly interconnected porous structures, good swelling, and biodegradable properties. BMEP content significantly influenced the physicochemical and biological properties of the hydrogels. Increasing BMEP content enhanced the fibrous structure, porosity from 85.1 % to 89.5 %, and compressive mechanical strength. The optimized hydrogel (2.0P-BC-PAM) displayed maximum compressive stress, toughness, and elastic modulus at 75 % strain: 221 ± 0.08 kPa, 24,674.2 ± 978 kPa, and 11 ± 0.47 kPa, respectively. P-BC-PAM hydrogels underwent biomineralization in simulated body fluid (SBF) for 14 days, forming bone-like apatite with a Ca/P ratio of 1.75, similar to hydroxyapatite. Confirmed by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM), this suggests their potential as scaffolds for bone tissue engineering. MC3T3-E1 osteoblast cells effectively attached and proliferated on P-BC-PAM. In summary, this study contributes insights into developing phosphate-functionalized BC-based hydrogels with potential applications in bone tissue engineering.


Asunto(s)
Apatitas , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Apatitas/química , Celulosa/química , Hidrogeles/farmacología , Hidrogeles/química , Durapatita/química , Andamios del Tejido/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier
20.
J Biomater Sci Polym Ed ; 35(5): 675-716, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37943320

RESUMEN

The constantly accelerating occurrence of microbial infections and their antibiotic resistance has spurred advancement in the field of material sciences and has guided the development of novel materials with anti-bacterial properties. To address the clinical exigencies, the material of choice should be biodegradable, biocompatible, and able to offer prolonged antibacterial effects. As an attractive option, hydrogels have been explored globally as a potent biomaterial platform that can furnish essential antibacterial attributes owing to its three-dimensional (3D) hydrophilic polymeric network, adequate biocompatibility, and cellular adhesion. The current review focuses on the utilization of different antimicrobial hydrogels based on their sources (natural and synthetic). Further, the review also highlights the strategies for the generation of hydrogels with their advantages and disadvantages and their applications in different biomedical fields. Finally, the prospects in the development of hydrogels-based antimicrobial biomaterials are discussed along with some key challenges encountered during their development and clinical translation.


Asunto(s)
Antiinfecciosos , Hidrogeles , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Biopolímeros , Materiales Biocompatibles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA