RESUMEN
PURPOSE: This study aimed to develop a tumor radiomics quality and quantity model (RQQM) based on preoperative enhanced CT to predict early recurrence after radical surgery for colorectal liver metastases (CRLM). METHODS: A retrospective analysis was conducted on 282 cases from 3 centers. Clinical risk factors were examined using univariate and multivariate logistic regression (LR) to construct the clinical model. Radiomics features were extracted using the least absolute shrinkage and selection operator (LASSO) for dimensionality reduction. The LR learning algorithm was employed to construct the radiomics model, RQQM (radiomics-TBS), combined model (radiomics-clinical), clinical risk score (CRS) model and tumor burden score (TBS) model. Inter-model comparisons were made using area under the curve (AUC), decision curve analysis (DCA) and calibration curve. Log-rank tests assessed differences in disease-free survival (DFS) and overall survival (OS). RESULTS: Clinical features screening identified CRS, KRAS/NRAS/BRAF and liver lobe distribution as risk factors. Radiomics model, RQQM, combined model demonstrated higher AUC values compared to CRS and TBS model in training, internal and external validation cohorts (Delong-test P < 0.05). RQQM outperformed the radiomics model, but was slightly inferior to the combined model. Survival curves revealed statistically significant differences in 1-year DFS and 3-year OS for the RQQM (P < 0.001). CONCLUSIONS: RQQM integrates both "quality" (radiomics) and "quantity" (TBS). The radiomics model is superior to the TBS model and has a greater impact on patient prognosis. In the absence of clinical data, RQQM, relying solely on imaging data, shows an advantage in predicting early recurrence after radical surgery for CRLM.
RESUMEN
Abstract Background: UVB irradiation can cause acute damage such as sunburn, or photoaging and melanoma, all of which are major health threats. Objective: This study was designed to investigate the mechanism of skin photoaging induced by UVB radiation in mice through the analysis of the differential expression of miRNAs. Methods: A UVB irradiation photoaging model was constructed. HE and Masson special stains were used to examine the modifications in the epidermis and dermis of mice. The miRNA expression profiles of the mouse skin model exposed to UVB radiation and the normal skin of mice were analyzed using miRNA-sequence analysis. GO and Pathway analysis were employed for the prediction of miRNA targets. Results: A total of 23 miRNAs were evaluated for significantly different expressions in comparison to normal skin. Among them, 7 miRNAs were up-regulated and 16 were down-regulated in the skin with photoaging of mice exposed to UVB irradiation. The differential expression of miRNA is related to a variety of signal transduction pathways, among which mmu-miR-195a-5p and mitogen-activated protein kinase (MAPK) signal pathways are crucial. There was a significant differential expression of miRNA in the skin of normal mice in comparison with the skin with photoaging induced by UVB irradiation. Study limitations: Due to time and energy constraints, the specific protein level verification, MAPK pathway exploration, and miR-195a-5p downstream molecular mechanism need to be further studied in the future. Conclusions: UVB-induced skin photoaging can be diagnosed and treated using miRNA.
RESUMEN
BACKGROUND: UVB irradiation can cause acute damage such as sunburn, or photoaging and melanoma, all of which are major health threats. OBJECTIVE: This study was designed to investigate the mechanism of skin photoaging induced by UVB radiation in mice through the analysis of the differential expression of miRNAs. METHODS: A UVB irradiation photoaging model was constructed. HE and Masson special stains were used to examine the modifications in the epidermis and dermis of mice. The miRNA expression profiles of the mouse skin model exposed to UVB radiation and the normal skin of mice were analyzed using miRNA-sequence analysis. GO and Pathway analysis were employed for the prediction of miRNA targets. RESULTS: A total of 23 miRNAs were evaluated for significantly different expressions in comparison to normal skin. Among them, 7 miRNAs were up-regulated and 16 were down-regulated in the skin with photoaging of mice exposed to UVB irradiation. The differential expression of miRNA is related to a variety of signal transduction pathways, among which mmu-miR-195a-5p and mitogen-activated protein kinase (MAPK) signal pathways are crucial. There was a significant differential expression of miRNA in the skin of normal mice in comparison with the skin with photoaging induced by UVB irradiation. STUDY LIMITATIONS: Due to time and energy constraints, the specific protein level verification, MAPK pathway exploration, and miR-195a-5p downstream molecular mechanism need to be further studied in the future. CONCLUSIONS: UVB-induced skin photoaging can be diagnosed and treated using miRNA.
Asunto(s)
MicroARNs , Envejecimiento de la Piel , Rayos Ultravioleta , Animales , Epidermis , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Quinasas Activadas por Mitógenos , Piel/efectos de la radiación , Envejecimiento de la Piel/genética , Rayos Ultravioleta/efectos adversosRESUMEN
A smart synthetic chemical design incorporating furfurylamine, a natural renewable amine, into a partially bio-based coumarin-containing benzoxazine is presented. The versatility of the synthetic approach is shown to be flexible and robust enough to be successful under more ecofriendly reaction conditions by replacing toluene with ethanol as the reaction solvent and even under solventless conditions. The chemical structure of this coumarin-furfurylamine-containing benzoxazine is characterized by FTIR, (1) Hâ NMR spectroscopy and two-dimensional (1) H-(1) H nuclear Overhauser effect spectroscopy (2D (1) H-(1) H NOESY). The thermal properties of the resin toward polymerization are characterized by differential scanning calorimetry (DSC) and the thermal stability of the resulting polymers by thermogravimetric analysis (TGA). The results reveal that the furanic moiety induces a co-operative activating effect, thus lowering the polymerization temperature and also contributes to a better thermal stability of the resulting polymers. These results, in addition to those of natural renewable benzoxazine resins reviewed herein, highlight the positive and beneficial implication of designing novel bio-based polybenzoxazine and possibly other thermosets with desirable and competitive properties.