Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Health Sci Eng ; 21(2): 475-484, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37869603

RESUMEN

Formaldehyde, a volatile organic compound (VOC), is one of the main gaseous pollutants from commercial cooking. The present study evaluated the effectiveness of a laboratory-scale ozone-assisted indirect plasma method for formaldehyde removal using response surface methodology (RSM). A dielectric barrier discharge (DBD) reactor was used for ozone generation. Inlet HCHO concentration, ozone concentration, and residence time were considered the design parameters, and formaldehyde removal efficiency (response 1) and energy yield (response 2) were considered response parameters. The optimized models showed a positive correlation between the predicted and experimental outcomes. Inlet ozone concentration, the most significant parameter in the removal efficiency model, represented a positive correlation with this response in most parts of the operating region. The optimal point with the highest desirability (i.e., D1 point) was obtained at the inlet HCHO concentration of 120 ppm, inlet ozone concentration of 40 ppm, and reaction time of 11.35 s within the parameter ranges studied, resulting in 64% removal efficiency and 2.64 g/kWh energy yield. At the point with the second highest desirability (D2), 100% removal efficiency along with 0.7 g/kWh energy yield was achieved indicating the very good performance of the process. The indirect plasma approach used in this study presented a successful performance in terms of removal efficiency along with acceptable energy yield compared to other plasma-assisted processes reported in the literature. The results suggested that ozone-assisted indirect plasma treatment can be utilized as an efficient alternative method for formaldehyde removal in commercial kitchens, while efficiency or energy yield should be prioritized for optimizing operating conditions.

2.
Sci Total Environ ; 711: 134819, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31812422

RESUMEN

Selective oxidation of H2S to elemental sulfur is a low cost and highly efficient process for sulfur removal from H2S-containing hydrocarbon streams in medium scale (i.e. 0.2-10 ton sulfur/day) for environmental protection and prevention of emitting toxic gases to the atmosphere. In this research, in order to prepare a highly active and selective nanocatalyst for selective oxidation of hydrogen sulfide, for the first time, molybdenum oxides were loaded uniformly over nitrogen- doped carbon nanotubes through incipient wetness impregnation. Different metal loadings including 5, 10, and 15 wt% Mo were considered in the synthesis procedure to achieve the optimized performance and provide complete environmental protection. The Mox/N-CNT nanocatalysts were thoroughly characterized via TEM, FE-SEM, XPS, N2 adsorption/desorption, and XRD techniques. The characterization methods confirmed that the Mo oxides nanoparticles were successfully distributed over the N-CNT support uniformly in nanoscale in which there was no sign of agglomeration. The catalytic experiments on Mox/N-CNT were performed in temperature range of 190-230 °C in which the feed gas was composed of 3000 ppm H2S and 1500 ppm O2. The results showed that the Mox/N-CNT samples were highly active at all considered temperatures providing the H2S conversion of almost 100% from which almost no H2S was emitted. Furthermore, by loading the Mo oxide over the N-CNT support, selectivity toward elemental sulfur was increased significantly at high temperatures (i.e. above 190 °C) suggesting that the progress of side reactions on the nanocatalyst has been minimized. The best result was obtained with the sample containing 15 wt% Mo at 230 °C providing the H2S conversion of 100% and selectivity of 89.7%. According to these results, Mo oxide/N-CNT is introduced as a potential candidate for catalytic H2S removal processes toward environmental protection in industrial plants.

3.
J Hazard Mater ; 364: 218-226, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30366243

RESUMEN

Two-dimensional mesoporous carbon nitride and its highly efficient nanorod framework were prepared via hard-templating method. The obtained materials were fully characterized. The results showed that the samples structural ordering and morphology were similar to those of the parent silica templates; they had large pore volumes as well as high surface area structures. Carbon nitride carbocatalysts were used for H2S selective oxidation. The catalytic tests were carried out at 190, 210 and 230 °C in a fixed bed reactor. The obtained selectivity values for mesoporous carbon nitride rod and mesoporous carbon nitride toward elemental sulfur at 190 °C were 88.8% and 83%, respectively. Both samples were highly active due to their alkaline surface, appropriate pore size distribution and structure. In comparison with other carbon-based materials used for this process, mesoporous carbon nitride rod is the first carbonaceous material reported so far that could yield high levels of both conversion and selectivity at 190 °C. This superiority could be caused by the narrow pore size distribution (<3 nm), incorporation of nitrogen into the carbon matrix and its appropriate morphology. Nitrogen species act as electron donors in H2S oxidation. Rod-like particles might have acted as nanoreactors that facilitated the reaction progress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA