Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Sport Rehabil ; 33(7): 485-494, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39117316

RESUMEN

CONTEXT: The best current evidence supports the effectiveness of neuromuscular training in reducing the risk of injury; however, the rate of anterior cruciate ligament (ACL) injuries is still high. Neurocognitive training (NT) has successfully improved biomechanical risk factors, but they have been considered in only a few studies. OBJECTIVE: To review the literature to determine the effect of NT on biomechanical risk factors related to ACL injury in athletes. EVIDENCE ACQUISITION: We searched PubMed, Google Scholar, Scopus, Science Direct, and the Physiotherapy Evidence Database from inception to August 2011. We included randomized controlled trials that used motor learning approaches and injury prevention programs to investigate kinematic and kinetic risk factors related to ACL injury. The quality of each clinical trial study was evaluated by the Physiotherapy Evidence Database scale. The eligibility criteria were checked based on the PICOS (population, intervention, comparison, outcome, and study type) framework. EVIDENCE SYNTHESIS: A total of 9 studies were included in the final analysis. Motor learning approaches include internal and external focus of attention, dual tasks, visual motor training, self-control feedback, differential learning, and linear and nonlinear pedagogy, combined with exercise programs. In most of the studies that used NT, a significant decrease in knee valgus; tibial abduction and external rotation; ground reaction force; and an increase in knee-, trunk-, hip-, and knee-flexion moment was observed. CONCLUSION: In classical NT, deviation from the ideal movement pattern especially emphasizing variability and self-discovery processes is functional in injury prevention and may mitigate biomechanical risk factors of ACL injuries in athletes. Practitioners are advised to use sport-specific cognitive tasks in combination with neuromuscular training to simulate loads of the competitive environment. This may improve ACL injury risk reduction and rehabilitation programs.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Traumatismos en Atletas , Humanos , Lesiones del Ligamento Cruzado Anterior/prevención & control , Fenómenos Biomecánicos , Factores de Riesgo , Traumatismos en Atletas/prevención & control , Atletas
2.
BMC Sports Sci Med Rehabil ; 14(1): 196, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36415003

RESUMEN

BACKGROUND: The performing of jump and landing in futsal simultaneous with divided attention is one of the most common mechanisms of non-contact anterior cruciate ligament (ACL) injury. Neuromuscular training has effectively reduced the risk of ACL injury, but the effect of neurocognitive training has received less attention. This study investigated the effect of combining 8 weeks of neuromuscular training with dual cognitive tasks on the landing mechanics of futsal players with knee ligament dominance defects. METHODS: Thirty male futsal players (mean ± SD: age: 21.86 ± 3.27 years) with knee ligament dominance defects were purposefully identified by the tuck jump test and were randomly divided into the intervention and the control group. The intervention group performed dual task (DT) training for three weekly sessions for 8 weeks and 60 min each, while the control group only did activities of daily living. During the drop vertical jump test, 2D landing kinematics in two moments of initial contact (IC) and full flexion (FF) were assessed. Data were analyzed by means of 2 × 2 repeated measures ANOVA followed by post hoc comparison (Bonferroni) at the significance level of (α ≤ 0.05). RESULTS: A significant improvement was observed in the intervention group compared to the control group for the dynamic knee valgus at IC (F1,28 = 6.33; P = 0.02, ES = 0.31) and FF (F1,28 = 13.47; P = 0.003, ES = 0.49), knee flexion at IC (F1,28 = 20.08; P = 0.001, ES = 0.41) and FF (F1,28 = 13.67; P = 0.001, ES = 0.32), ankle dorsiflexion at IC (F1,28 = 37.17; P = 0.001, ES = 0.72) and FF (F1,28 = 14.52; P = 0.002, ES = 0.50), and trunk flexion at FF (F1,28 = 20.48; P = 0.001, ES = 0.59) angles. Changes in the trunk flexion at IC (F1,28 = 0.54; P = 0.47, ES = 0.03) and trunk lateral flexion at IC (F1,28 = 0.006; P = 0.93, ES = 0.00) and FF (F1,28 = 2.44; P = 0.141, ES = 0.148) angles were not statistically significant. CONCLUSIONS: DT training compared to the control group improved landing mechanics in futsal players with knee ligament dominance defects. TRIAL REGISTRATION: Current Controlled Trials using the IRCT website with ID number IRCT20210602051477N1 prospectively registered on 20/06/2021.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA