Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Virol ; 89(10): 5362-70, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25740995

RESUMEN

UNLABELLED: Hepatitis C virus (HCV) NS3 is a multifunctional protein composed of a protease domain and a helicase domain linked by a flexible linker. Protease activity is required to generate viral nonstructural (NS) proteins involved in RNA replication. Helicase activity is required for RNA replication, and genetic evidence implicates the helicase domain in virus assembly. Binding of protease inhibitors (PIs) to the protease active site blocks NS3-dependent polyprotein processing but might impact other steps of the virus life cycle. Kinetic analyses of antiviral suppression of cell culture-infectious genotype 1a strain H77S.3 were performed using assays that measure different readouts of the viral life cycle. In addition to the active-site PI telaprevir, we examined an allosteric protease-helicase inhibitor (APHI) that binds a site in the interdomain interface. By measuring nucleotide incorporation into HCV genomes, we found that telaprevir inhibits RNA synthesis as early as 12 h at high but clinically relevant concentrations. Immunoblot analyses showed that NS5B abundance was not reduced until after 12 h, suggesting that telaprevir exerts a direct effect on RNA synthesis. In contrast, the APHI could partially inhibit RNA synthesis, suggesting that the allosteric site is not always available during RNA synthesis. The APHI and active-site PI were both able to block virus assembly soon (<12 h) after drug treatment, suggesting that they rapidly engage with and block a pool of NS3 involved in assembly. In conclusion, PIs and APHIs can block NS3 functions in RNA synthesis and virus assembly, in addition to inhibiting polyprotein processing. IMPORTANCE: The NS3/4A protease of hepatitis C virus (HCV) is an important antiviral target. Currently, three PIs have been approved for therapy of chronic hepatitis C, and several others are in development. NS3-dependent cleavage of the HCV polyprotein is required to generate the mature nonstructural proteins that form the viral replicase. Inhibition of protease activity can block RNA replication by preventing expression of mature replicase components. Like many viral proteins, NS3 is multifunctional, but how PIs affect stages of the HCV life cycle beyond polyprotein processing has not been well studied. Using cell-based assays, we show here that PIs can directly inhibit viral RNA synthesis and also block a late stage in virus assembly/maturation at clinically relevant concentrations.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/fisiología , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/fisiología , Ensamble de Virus/efectos de los fármacos , Ensamble de Virus/fisiología , Antivirales/farmacología , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular , Cinética , Oligopéptidos/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , ARN Viral/biosíntesis , Proteínas no Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA