Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(9): e0308506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39288164

RESUMEN

Over the years, the driver-vehicle interface has been improved, but interacting with in-vehicle features can still increase distraction and affect road safety. This study aims to introduce brain-machine interface (BMI)- based solution to potentially enhance road safety. To achieve this goal, we evaluated visual stimuli properties (SPs) for a steady state visually evoked potentials (SSVEP)-based BMI system. We used a heads-up display (HUD) as the primary screen to present icons for controlling in-vehicle functions such as music, temperature, settings, and navigation. We investigated the effect of various SPs on SSVEP detection performance including the duty cycle and signal-to-noise ratio of visual stimuli, the size, color, and frequency of the icons, and array configuration and location. The experiments were conducted with 10 volunteers and the signals were analyzed using the canonical correlation analysis (CCA), filter bank CCA (FBCCA), and power spectral density analysis (PSDA). Our experimental results suggest that stimuli with a green color, a duty cycle of 50%, presented at a central location, with a size of 36 cm2 elicit a significantly stronger SSVEP response and enhanced SSVEP detection time. We also observed that lower SNR stimuli significantly affect SSVEP detection performance. There was no statistically significant difference observed in SSVEP response between the use of an LCD monitor and a HUD.


Asunto(s)
Interfaces Cerebro-Computador , Potenciales Evocados Visuales , Estimulación Luminosa , Humanos , Potenciales Evocados Visuales/fisiología , Adulto , Masculino , Femenino , Electroencefalografía/métodos , Adulto Joven , Conducción de Automóvil , Relación Señal-Ruido
2.
Appl Ergon ; 108: 103937, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36462453

RESUMEN

Work-related stress has long been recognized as an essential factor affecting employees' health and wellbeing. Repeated exposure to acute occupational stressors puts workers at high risk for depression, obesity, hypertension, and early death. Assessment of the effects of acute stress on workers' wellbeing usually relies on subjective self-reports, questionnaires, or measuring biometric and biochemical markers in long-cycle time intervals. This study aimed to develop and validate the use of a multiparameter wearable armband for continuous non-invasive monitoring of physiological states. Two worker populations were monitored 24 h/day: six loggers for one day and six ICU nurses working 12-hr shifts for one week. Stress responses in nurses were highly correlated with changes in heart rate variability (HRV) and pulse transit time (PTT). A rise in the low-to high-frequency (LF/LH) ratio in HRV was also coincident with stress responses. HRV on workdays decreased compared to non-work days, and PTT also exhibited a persistent decrease reflecting increased blood pressure. Compared to loggers, nurses were involved in high-intensity work activities 45% more often but were less active on non-work days. The wearable technology was well accepted by all worker participants and yielded high signal quality, critical factors for long-term non-invasive occupational health monitoring.


Asunto(s)
Estrés Laboral , Violencia Laboral , Humanos , Obesidad , Frecuencia Cardíaca/fisiología , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA