Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 14(4)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35456628

RESUMEN

A novel formulation technology called AKVANO® has been developed with the aim to provide a tuneable and versatile drug delivery system for topical administration. The vehicle is based on a water-free lipid formulation where selected lipids, mainly phospholipids rich in phosphatidylcholine, are dissolved in a volatile solvent, such as ethanol. With the aim of describing the basic properties of the system, the following physicochemical methods were used: viscometry, dynamic light scattering, NMR diffusometry, and atomic force microscopy. AKVANO formulations are non-viscous, with virtually no or very minute aggregates formed, and when applied to the skin, e.g., by spraying, a thin film consisting of lipid bilayer structures is formed. Standardized in vitro microbiological and irritation tests show that AKVANO formulations meet criteria for antibacterial, antifungal, and antiviral activities and, at the same time, are being investigated as a non-irritant to the skin and eye. The ethanol content in AKVANO facilitates incorporation of many active pharmaceutical ingredients (>80 successfully tested) and the phospholipids seem to act as a solubilizer in the formulation. In vitro skin permeation experiments using Strat-M® membranes have shown that AKVANO formulations can be designed to alter the penetration of active ingredients by changing the lipid composition.

2.
Nanoscale ; 8(42): 18204-18211, 2016 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-27752695

RESUMEN

In this study the wet adhesion between Layer-by-Layer (LbL) assembled films of triblock copolymer micelles was investigated. Through the LbL assembly of triblock copolymer micelles with hydrophobic, low glass transition temperature (Tg) middle blocks and ionic outer blocks, a network of energy dissipating polymer chains with electrostatic interactions serving as crosslinks can be built. Four triblock copolymers were synthesized through Atom Transfer Radical Polymerisation (ATRP). One pair had a poly(2-ethyl-hexyl methacrylate) middle block with cationic or anionic outer blocks. The other pair contained the same ionic outer blocks but poly(n-butyl methacrylate) as the middle block. The wet adhesion was evaluated with colloidal probe AFM. To our knowledge, wet adhesion of the magnitude measured in this study has not previously been measured on any polymer system with this technique. We are convinced that this type of block copolymer system grants the ability to control the geometry and adhesive strength in a number of nano- and macroscale applications.

3.
Biofouling ; 26(6): 697-710, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20672200

RESUMEN

The adsorption of proteins from human whole saliva (HWS) onto silica and hydroxyapatite surfaces (HA) was followed by quartz crystal microbalance with dissipation (QCM-D) and ellipsometry. The influence of different surface properties and adsorption media (water and PBS) on the adsorption from saliva was studied. The viscoelastic properties of the salivary films formed on the solid surfaces were estimated by the use of the Voigt-based viscoelastic film model. Furthermore, the efficiency of SDS and delmopinol to elute the adsorbed salivary film from the surfaces was investigated at different surfactant concentrations. A biphasic kinetic regime for the adsorption from saliva on the silica and HA surfaces was observed, indicating the formation of a rigidly coupled first layer corresponding to an initial adsorption of small proteins and a more loosely bound second layer. The results further showed a higher adsorption from HWS onto the HA surfaces compared to the silica surfaces in both adsorption media (PBS and water). The adsorption in PBS led to higher adsorbed amounts on both surfaces as compared to water. SDS was found to be more efficient in removing the salivary film from both surfaces than delmopinol. The salivary film was found to be less tightly bound onto the silica surfaces since more of the salivary film could be removed with both SDS and delmopinol compared to that from the HA surface. When adsorption took place from PBS the salivary layer formed at both surfaces seemed to have a similar structure, with a high energy dissipation implying that a softer salivary layer is built up in PBS as opposed to that in water. Furthermore, the salivary layers adsorbed from water solutions onto the HA were found to be softer than those on silica.


Asunto(s)
Durapatita/química , Morfolinas/química , Saliva/química , Proteínas y Péptidos Salivales/química , Dióxido de Silicio/química , Dodecil Sulfato de Sodio/química , Tensoactivos/química , Adsorción , Adulto , Biopelículas , Humanos , Cinética , Masculino , Propiedades de Superficie
4.
J Colloid Interface Sci ; 350(1): 275-81, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20619845

RESUMEN

Delmopinol is a tertiary amine surfactant that is used to counteract dental plaque formation. As it is of interest to understand the interfacial behavior from both fundamental and applied perspectives the adsorption of delmopinol to model surfaces was investigated. Adsorption on Teflon, titanium and stainless steel was studied by radioactive labeling and adsorption on silica was studied by quartz crystal microbalance (QCM), ellipsometry and particle electrophoresis. It was shown that the adsorption of delmopinol was complex and strongly influenced by pH and concentration. Pronounced peak values were detected in the adsorption curves (adsorbed amount versus concentration) exceeding the expected value for a bilayer type of structure. To account for this behavior two surface active component were assumed to be present. Accordingly, the high amounts result from the deposition of the component with lower solubility and the decrease at the critical micelle concentration can be explained by solubilization of this component. Based on data from several experimental methods and the pH dependence of the effect we propose an explanation in which the protonated and non-protonated forms of delmopinol represent the two components. However, it cannot be excluded that the component with the lower solubility could be a compound chemically different from delmopinol in the sample.


Asunto(s)
Morfolinas/química , Tensoactivos/química , Equilibrio Ácido-Base , Adsorción , Estructura Molecular , Antisépticos Bucales/química , Propiedades de Superficie
5.
Langmuir ; 26(7): 4901-8, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20184356

RESUMEN

Mucin and lactoperoxidase are both natively present in the human saliva. Mucin provides lubricating and antiadhesive function, while lactoperoxidase has antimicrobial activity. We propose that combined films of the two proteins can be used as a strategy for surface modification in biomedical applications such as implants or biosensors. In order to design and ultilize mixed protein films, it is necessary to understand the variation in adsorption behavior of the proteins onto different surfaces and how it affects their interaction. The quartz crystal microbalance with dissipation (QCM-D) technique has been used to extract information of the adsorption properties of bovine mucin (BSM) and lactoperoxidase (LPO) to gold, silica, and hydrophobized silica surfaces. The information has further been used to retrieve information of the viscoelastic properties of the adsorbed film. The adsorption and compaction of BSM were found to vary depending on the nature of the underlying bare surface, adsorbing as a thick highly hydrated film with loops and tails extending out in the bulk on gold and as a thinner film with much lower adsorbed amount on silica; and on hydrophobic surfaces, BSM adsorbs as a flat and much more compact layer. On gold and silica, the highly hydrated BSM film is cross-linked and compacted by the addition of LPO, whereas the compaction is not as pronounced on the already more compact film formed on hydrophobic surfaces. The adsorption of LPO to bare surfaces also varied depending on the type of surface. The adsorption profile of BSM onto LPO-coated surfaces mimicked the adsorption to the underlying surface, implying little interaction between the LPO and BSM. The interaction between the protein layers was interpreted as a combination of electrostatic and hydrophobic interactions, which was in turn influenced by the interaction of the proteins with the different substrates.


Asunto(s)
Lactoperoxidasa/química , Mucinas/química , Cuarzo/química , Absorción , Animales , Bovinos , Oro/química , Modelos Teóricos , Dióxido de Silicio/química , Propiedades de Superficie
6.
Langmuir ; 22(26): 11065-71, 2006 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-17154585

RESUMEN

The buildup of biodegradable poly(L-glutamic acid) (PGA) and poly(L-lysine) (PLL) multilayers on silica and titanium surfaces and the immobilization of enamel matrix derivate (EMD) protein was followed by utilizing in situ ellipsometry, quartz crystal microbalance with dissipation, and dual-polarization interferometry (DPI). The use of the relatively new DPI technique validated earlier published ellipsometry measurements of the PLL-PGA polypeptide films. The hydrophobic aggregating EMD protein was successfully immobilized both on top of and within the multilayer structures at pH 5.0. DPI measurements further indicated that the immobilization of EMD is influenced by the flow pattern during adsorption. The formed polypeptide-EMD multilayer films are of interest since it is known that EMD is able to trigger cell response and induce biomineralization. The multilayer films thus have potential to be useful as bioactive and biodegradable coatings for future dental implants.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Proteínas del Esmalte Dental/química , Implantes Dentales , Ácido Poliglutámico/química , Polilisina/química , Dióxido de Silicio/química , Titanio/química , Animales , Materiales Biocompatibles Revestidos/síntesis química , Ácido Poliglutámico/síntesis química , Polilisina/biosíntesis
7.
Langmuir ; 22(5): 2227-34, 2006 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-16489811

RESUMEN

Adsorption of the amelogein protein mixture enamel matrix derivate (EMD) to silica surfaces has been studied by in situ ellipsometry and quartz crystal microbalance with dissipation (QCM-D). The protein was found to adsorb as nanospheres in mono- or multilayers, depending on the concentration of "free" nanospheres available in solution. The concentration of free nanospheres is determined by the competitive processes of adsorption and rapid aggregation into microscopic particles, measured by dynamic light scattering (DLS). Multilayers could also be formed by sequential injections of fresh EMD solution. At higher temperature, an up to 6 times thicker gel-like film was formed on the substrate surface, and decreasing the pH lead to disruption of the multilayer/aggregate formation and a decreased amount adsorbed.


Asunto(s)
Proteínas del Esmalte Dental/química , Adsorción , Amelogenina/química , Animales , Materiales Biocompatibles Revestidos , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Complejos Multiproteicos , Dióxido de Silicio , Resonancia por Plasmón de Superficie , Propiedades de Superficie , Porcinos , Temperatura
8.
Biomacromolecules ; 6(3): 1353-9, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15877352

RESUMEN

We have used a novel polyelectrolyte multilayer (PEM) coating consisting of the polyelectrolytes collagen and hyaluronic acid. The build-up by the layer-by-layer deposition technique is outlined by ex situ and in situ ellipsometric measurements. When collagen was added, the thickness of the PEM was increased, and the refractive index was decreased. Corresponding but opposite effects were noted when hyaluronic acid was added. These changes are considered to be explained by a diffusion mechanism. It was also found that the PEM layers were unstable at physiological pH. However, by cross-linking using N-(3-di-methylaminopropyl)-N'-ethylcarbodiimide together with N-hydroxysuccinimide, a stable PEM layer resulted. These tissue friendly PEM layers are expected to have a great impact in the design of artificial extracellular matrixes. Also, the insertion of fluorescence labels demonstrates the potential for incorporation of other functionalities.


Asunto(s)
Colágeno/síntesis química , Ácido Hialurónico/síntesis química , Polímeros/síntesis química , Electrólitos
9.
J Am Chem Soc ; 126(51): 17009-15, 2004 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-15612739

RESUMEN

Polyelectrolyte multilayers (PEM) of poly(L-glutamic acid) (PGA) and poly(L-lysine) (PLL) with an initial layer of polyethyleneimine (PEI) were built on silica and titanium surfaces using the layer-by-layer (LbL) technique. The stability of the film during drying/rewetting, temperature cycles, and pH shifts was studied in situ by means of ellipsometry. The film thickness was found to decrease significantly (approximately 70%) upon drying, but the original film thickness was regained upon rewetting, and the buildup could be continued. The thickness in the dry state was found to be extremely sensitive to ambient humidity, needing several hours to equilibrate. Changes in temperature and pH were also found to influence the multilayer thickness, leading to swelling and deswelling of as much as 8% and 10-20% respectively. The film does not necessarily regain its original thickness as the pH is shifted back, but instead shows clear signs of hysteresis.


Asunto(s)
Polietileneimina/química , Ácido Poliglutámico/química , Polilisina/química , Desecación , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Dióxido de Silicio/química , Temperatura , Titanio/química , Humectabilidad
10.
Langmuir ; 20(5): 1739-45, 2004 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-15801437

RESUMEN

The buildup of poly(L-glutamic acid) (PGA) and poly(L-lysine) (PLL) multilayers on silica and titanium surfaces, with and without an initial layer of polyethyleneimine (PEI), was investigated and characterized by means of in situ ellipsometry and quartz crystal microbalance with dissipation. A two-regime buildup was found in all systems, where the length of the first slow-growing regime is dependent on the structure of the initial layers. In the second fast-growing regime, the film thickness grows linearly while the mass increases more than linearly (close to exponentially) with the number of deposited layers. The film refractive indices as well as the water contents indicate that the film density changes as the multilayer film builds up. The change in film density was proposed to be due to polypeptides diffusing into the multilayer film as they attach. Furthermore, the use of PEI as the initial layer was found to induce a difference in the thickness increments for PGA and PLL.


Asunto(s)
Ácido Poliglutámico/química , Polilisina/química , Cuarzo/química , Titanio/química , Electroquímica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA