Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RNA ; 30(3): 240-255, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38164599

RESUMEN

XIST noncoding RNA promotes the initiation of X chromosome silencing by recruiting the protein SPEN to one X chromosome in female mammals. The SPEN protein is also called SHARP (SMRT and HDAC-associated repressor protein) and MINT (Msx-2 interacting nuclear target) in humans. SPEN recruits N-CoR2 and HDAC3 to initiate histone deacetylation on the X chromosome, leading to the formation of repressive chromatin marks and silencing gene expression. We dissected the contributions of different RNA and protein regions to the formation of a human XIST-SPEN complex in vitro and identified novel sequence and structure determinants that may contribute to X chromosome silencing initiation. Binding of SPEN to XIST RNA requires RRM 4 of the protein, in contrast to the requirement of RRM 3 and RRM 4 for specific binding to SRA RNA. Measurements of SPEN binding to full-length, dimeric, trimeric, or other truncated versions of the A-repeat region revealed that high-affinity binding of XIST to SPEN in vitro requires a minimum of four A-repeat segments. SPEN binding to XIST A-repeat RNA changes the accessibility of the RNA at specific nucleotide sequences, as indicated by changes in RNA reactivity through chemical structure probing. Based on computational modeling, we found that inter-repeat duplexes formed by multiple A-repeats can present an unpaired adenosine in the context of a double-stranded region of RNA. The presence of this specific combination of sequence and structural motifs correlates with high-affinity SPEN binding in vitro. These data provide new information on the molecular basis of the XIST and SPEN interaction.


Asunto(s)
ARN Largo no Codificante , Proteínas de Unión al ARN , Femenino , Humanos , Cromatina , Proteínas de Unión al ADN/genética , Silenciador del Gen , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Cromosoma X/metabolismo , Inactivación del Cromosoma X/genética
2.
Methods Mol Biol ; 2666: 213-229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37166668

RESUMEN

RNA-protein interactions are important in development and disease, but identification of novel RNA-protein interactions remains challenging. Here, we describe an updated capture method to identify direct and specific RNA-protein interactions. First, RNA and protein are covalently cross-linked in living cells by treatment with UV light at 254 nanometers wavelength. The antisense purification approach is dependent upon nucleic acid hybridization between biotinylated DNA probes and a target RNA. Target protein:RNA:DNA complexes are enriched by capture on streptavidin magnetic beads and purified through several denaturing washes that remove nonspecific protein and nucleic acid interactors. Mass spectrometry is used to identify proteins that are specifically enriched in the target RNA capture. This method has been applied to discover the protein interactions of noncoding RNAs but can be used to capture any RNA where the target sequence is known.


Asunto(s)
ADN , Rayos Ultravioleta , ADN/metabolismo , ARN/genética , Hibridación de Ácido Nucleico/métodos , Proteínas/genética
3.
Molecules ; 25(10)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414072

RESUMEN

Riboswitches are important model systems for the development of approaches to search for RNA-targeting therapeutics. A principal challenge in finding compounds that target riboswitches is that the effector ligand is typically almost completely encapsulated by the RNA, which severely limits the chemical space that can be explored. Efforts to find compounds that bind the guanine/adenine class of riboswitches with a high affinity have in part focused on purines modified at the C6 and C2 positions. These studies have revealed compounds that have low to sub-micromolar affinity and, in a few cases, have antimicrobial activity. To further understand how these compounds interact with the guanine riboswitch, we have performed an integrated structural and functional analysis of representative guanine derivatives with modifications at the C8, C6 and C2 positions. Our data indicate that while modifications of guanine at the C6 position are generally unfavorable, modifications at the C8 and C2 positions yield compounds that rival guanine with respect to binding affinity. Surprisingly, C2-modified guanines such as N2-acetylguanine completely disrupt a key Watson-Crick pairing interaction between the ligand and RNA. These compounds, which also modulate transcriptional termination as efficiently as guanine, open up a significant new chemical space of guanine modifications in the search for antimicrobial agents that target purine riboswitches.


Asunto(s)
Bacillus subtilis/química , Pliegue del ARN , Riboswitch , Bacillus subtilis/genética , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA