Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 86(10): 103113, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26520946

RESUMEN

The Pixel Imaging Mass Spectrometry (PImMS) camera is used in proof-of-principle three-dimensional imaging experiments on the photodissociation of carbonyl sulfide and ethyl iodide at wavelengths around 230 nm and 245 nm, respectively. Coupling the PImMS camera with DC-sliced velocity-map imaging allows the complete three-dimensional Newton sphere of photofragment ions to be recorded on each laser pump-probe cycle with a timing precision of 12.5 ns, yielding velocity resolutions along the time-of-flight axis of around 6%-9% in the applications presented.

2.
Rapid Commun Mass Spectrom ; 28(15): 1649-57, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24975244

RESUMEN

RATIONALE: Imaging mass spectrometry is a powerful analytical technique capable of accessing a large volume of spatially resolved, chemical data from two-dimensional samples. Probing the entire surface of a sample simultaneously requires a detector with high spatial and temporal resolutions, and the ability to observe events relating to different mass-to-charge ratios. METHODS: A commercially available time-of-flight mass spectrometer, designed for matrix-assisted laser desorption/ionization (MALDI) analysis, was combined with the novel pixel imaging mass spectrometry (PImMS) camera in order to perform multi-mass, microscope-mode imaging experiments. A number of minor modifications were made to the spectrometer hardware and ion optics so that spatial imaging was achieved for a number of small molecules. RESULTS: It was shown that a peak width of Δm50 % < 1 m/z unit across the range 200 ≤ m/z ≤ 800 can be obtained while also achieving an optimum spatial resolution of 25 µm. It was further shown that these data were obtained simultaneously for all analytes present without the need to scan the experimental parameters. CONCLUSIONS: This work demonstrates the capability of multi-mass, microscope-mode imaging to reduce the acquisition time of spatially distributed analytes such as multi-arrays or biological tissue sections. It also shows that such an instrument can be commissioned by effecting relatively minor modifications to a conventional commercial machine.


Asunto(s)
Cámaras gamma , Aumento de la Imagen/instrumentación , Microscopía/instrumentación , Imagen Molecular/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
Rev Sci Instrum ; 83(11): 114101, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23206074

RESUMEN

Imaging mass spectrometry is a powerful technique that allows chemical information to be correlated to a spatial coordinate on a sample. By using stigmatic ion microscopy, in conjunction with fast cameras, multiple ion masses can be imaged within a single experimental cycle. This means that fewer laser shots and acquisition cycles are required to obtain a full data set, and samples suffer less degradation as overall collection time is reduced. We present the first spatial imaging mass spectrometry results obtained with a new time-stamping detector, named the pixel imaging mass spectrometry (PImMS) sensor. The sensor is capable of storing multiple time stamps in each pixel for each time-of-flight cycle, which gives it multi-mass imaging capabilities within each pixel. A standard velocity-map ion imaging apparatus was modified to allow for microscope mode spatial imaging of a large sample area (approximately 5 × 5 mm(2)). A variety of samples were imaged using PImMS and a conventional camera to determine the specifications and possible applications of the spectrometer and the PImMS camera.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA