Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 358: 120833, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599090

RESUMEN

Phosphate holds a critical role as a vital, limited, strategic, and irreplaceable resource. Throughout its production chain, residual phosphate can be found in waste streams. This study aims to enhance production efficiency by exploring methods to limit residual phosphate presence in waste stocks. It investigates the presence of residual phosphate in a phosphate mining site. The presence of residual phosphate throughout the production chain is investigated. Through meticulous analyses of extraction, destoning, and screening processes, the study identifies three primary stages where residual phosphate exists, the study simulates different scenarios of residual phosphate recovery and prevention. The principal data sources are data from mining site, recent literature, and information from a lithological log, the study meticulously analyzes the extraction, crushing, and sieving processes to assess the persistence of residual phosphate. The production chain diagnostic revealed that 76% of resource present is recovered (either integrated into the value chain or stored in the mine for future use), from which 8% goes to the destoning waste rocks (75% of which is residual phosphate) and the screening waste rocks (72% of which is residual phosphate), with an average grade that reaches 25% P2O5. Approximately, 24% of the initial phosphate rock (with an average grade of 22% P2O5) remains as residual phosphate which is retained in the spoil piles. To recover and prevent the presence of residual phosphate, the study proposes four new scenarios for improvement, including an integrated scenario where all the solutions are combined for a comprehensive approach. Both quantity and grade of recovered residual phosphate are assessed in each scenario. To evaluate these enhancements, the study utilizes the AnyLogic software to simulate existing process configuration and the maximal recovery of each scenario. The current flowsheet indicates that extracted phosphate can be directed either to pre-beneficiation and expedition or stored for future use. By prioritizing the extraction of phosphate over the final product, the simulation results suggest that implementing these novel scenarios could potentially save 25% of the total phosphate resource and increase storage by twofold, preserving phosphate that would otherwise be unused. This recovered phosphate can then be destined to various uses, meeting the company's present or future needs. Considering this, the study opts to keep stocks separated based on their grades and avoid mixing new phosphate streams with the final product. The implications of this research extend to sustainable mining practices, with direct ramifications for environmental impact mitigation and the conservation of valuable resources.


Asunto(s)
Minería , Fosfatos , Fosfatos/química
2.
Biodivers Data J ; 11: e104592, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37476209

RESUMEN

Mining activities have significant impacts on the environment, particularly in terms of the destruction of natural habitats andbiodiversity loss. With the increasing awareness of the importance of ecological restoration and conservation, there is a growing need to study and understand the flora that thrives in mining sites in order to facilitate successful reclamation efforts. This study aimed to investigate the floristic composition and plant diversity of four phosphate mine sites (PMSs) in Morocco, namely Bou Craa mine (BCM), Ben Guerir mine (BGM), Youssoufia mine (YSM), and Khouribga mine (KHM). The study found a total of 215 vascular plant species from 166 genera and 49 taxonomic families across the four sites. BGM was the most diverse site with 120 plant species, followed by KHM with 75, YSM with 57, and BCM with 54. Compositae family species were the most common at BGM and KHM, while Amaranthaceae species were dominant at BCM, and Poaceae and Compositae at YSM. Therophytes (annual species) were the most common functional group (45.0%), followed by chamaephytes (19.6%) and hemicryptophytes (15.9%). Atriplexnummularia and Chenopodiumalbum were the most common species found at all four sites, while Atriplexsemibaccata, Bassiamuricata, Haloxylonscoparium, and 12 other species were common at three sites. However, 156 plant species were found at only one site. The findings of this study highlight the significant abundance of plant species in Moroccan PMSs and provide a basis for successful ecological engineering rehabilitation plans. The study emphasizes the importance of studying the indigenous plant species that naturally populate these marginal lands to ensure successful reclamation efforts.

3.
Adv Colloid Interface Sci ; 317: 102921, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37209485

RESUMEN

Froth flotation has been a commonly employed technique to enrich natural ores by removing impurities based on the surface properties of minerals. This process involves the use of various reagents, including collectors, depressants, frothers, and activators, which are often chemically synthesized and may represent environmental risks. Therefore, there is a growing need to develop biobased reagents that offer more sustainable alternatives. The aim of this review is to provide a comprehensive assessment of the potential of biobased depressants as a sustainable alternative to traditional reagents in selective flotation process for phosphate ore minerals. To achieve this objective, the review investigates the extraction and the purification methods of different biobased depressants, analyzes the specific conditions for reagent interaction with minerals, and assess the biobased depressants' performance through a range of fundamental studies. These studies aim to (i) provide a better understanding of the adsorption behavior of some biobased depressants onto the surfaces of apatite, calcite, dolomite, and quartz comprised in different mineral systems by measuring their zeta potential and analyzing their Fourier transform infrared spectra before and after contact with these reagents, (ii) determine the depressants' adsorption amounts, (iii) evaluate their effect on the contact angle of bare minerals, and (iv) assess their ability to inhibit the flotation of the studied minerals. The outcomes revealed the potential use and the promising applicability of these unconventional reagents since their performance is comparable to that of conventional reagents. In addition to their good effectiveness, these biobased depressants have the added advantages of being cost effective, biodegradable, non-toxic, and ecofriendly. Nevertheless, further research and investigations are required to improve the selectivity and, consequently, the effectiveness of biobased depressants.

4.
Plants (Basel) ; 11(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35050067

RESUMEN

The abandoned Kettara pyrrhotite mine (Marrakech region, Morocco) is a real source of acid mine drainage (AMD) and heavy metal pollution from previous mining operations-which has spread, particularly because of wind erosion. A store-and-release cover system made of phosphate wastes was built on the site for preventing AMD. To ensure the integrity of this cover and its durability, it is desirable to revegetate it (phytostabilization) with plants adapted to the edaphoclimatic conditions of the region. In this paper, a study was carried out on the spontaneous vegetation around the phosphate cover in order to consider the selection of plants to promote the stabilization of the Kettara mine tailings pond. Nine species of native plants with their rhizospheric soils growing in agricultural soils and tailings from the Kettara mine were collected, and metals (As, Cd, Co, Cu, Pb, Zn, Ni, Cr) were analyzed. The soil analysis showed that the tailings contained high concentrations of Cu (177.64 mg/kg) and Pb (116.80 mg/kg) and that the agricultural soil contained high concentrations of As (25.07 mg/kg) and Cu (251.96 mg/kg) exceeding the toxicity level (Cu > 100 mg/kg, Pb > 100 mg/kg, As > 20 mg/kg). The plant analysis showed low trace metal accumulation in Scolymus hispanicus, Festuca ovina, Cleome brachycarpa, Carlina involucrata and Peganum harmala. These species had a bioconcentration factor (BCF) greater than 1 and a translocation factor (TF) less than 1, demonstrating a high tolerance to trace metals. Therefore, they are good candidates for use in the phytoremediation of the Kettara mine tailings. These species could also potentially be used for the phytostabilization of the phosphate waste cover of the Kettara mine, thus completing the rehabilitation process of this area.

5.
Front Microbiol ; 13: 1026991, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590425

RESUMEN

Morocco holds the vast majority of the world's phosphate reserves, but due to the processes involved in extracting and commercializing these reserves, large quantities of de-structured, nutritionally deficient mine phosphate wastes are produced each year. In a semi-arid climate, these wastes severely hamper plant growth and development leading to huge unvegetated areas. Soil indigenous Plant Growth-Promoting Bacteria (PGPB) play a pivotal role in restauration of these phosphate mining wastes by revegetation, by increasing plants development, soil functioning, and nutrient cycling. The development of a vegetative cover above the degraded phosphate wastes, could stabilize and reintegrate these wastes in the surrounding environment. The current study's objectives were to isolate, characterize, and identify indigenous bacterial strains, and test their PGP activity in vitro and, for the best-performing strains in planta, in order to assess their potential for acting as biofertilizers. A quantitative test for the synthesis of auxin and the production of siderophores as well as a qualitative test for the solubilization of phosphate were performed on all isolated bacterial strains. The production of hydrogen cyanide (HCN), exopolysaccharides (EPS), and enzymes were also examined. Three bacteria, selected among the best PGPB of this study, were tested in planta to determine whether such indigenous bacteria could aid plant growth in this de-structured and nutrient-poor mining soil. Using 16S rRNA gene sequencing, 41 bacterial strains were isolated and 11 genera were identified: Acinetobacter, Agrococcus, Bacillus, Brevibacterium, Microbacterium, Neobacillus, Paenibacillus, Peribacillus, Pseudarthrobacter, Stenotrophomonas, and Raoultella. Among the three best performing bacteria (related to Bacillus paramycoides, Brevibacterium anseongense, and Stenotrophomonas rhizophila), only Stenotrophomonas rhizophila and Brevibacterium anseongense were able to significantly enhance Lupinus albus L. growth. The best inoculation results were obtained using the strain related to Stenotrophomonas rhizophila, improving the plant's root dry weight and chlorophyll content. This is also, to our knowledge, the first study to show a PGP activity of Brevibacterium anseongense.

6.
Front Microbiol ; 12: 666936, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305834

RESUMEN

Soil microbiota are vital for successful revegetation, as they play a critical role in nutrient cycles, soil functions, and plant growth and health. A rehabilitation scenario of the abandoned Kettara mine (Morocco) includes covering acidic tailings with alkaline phosphate mine wastes to limit water infiltration and hence acid mine drainage. Revegetation of phosphate wastes is the final step to this rehabilitation plan. However, revegetation is hard on this type of waste in semi-arid areas and only a few plants managed to grow naturally after 5 years on the store-and-release cover. As we know that belowground biodiversity is a key component for aboveground functioning, we sought to know if any structural problem in phosphate waste communities could explain the almost absence of plants. To test this hypothesis, bacterial and archaeal communities present in these wastes were assessed by 16S rRNA metabarcoding. Exploration of taxonomic composition revealed a quite diversified community assigned to 19 Bacterial and two Archaeal phyla, similar to other studies, that do not appear to raise any particular issues of structural problems. The dominant sequences belonged to Proteobacteria, Bacteroidetes, Actinobacteria, and Gemmatimonadetes and to the genera Massilia, Sphingomonas, and Adhaeribacter. LEfSe analysis identified 19 key genera, and metagenomic functional prediction revealed a broader phylogenetic range of taxa than expected, with all identified genera possessing at least one plant growth-promoting trait. Around 47% of the sequences were also related to genera possessing strains that facilitate plant development under biotic and environmental stress conditions, such as drought and heat.

7.
Plants (Basel) ; 10(5)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946966

RESUMEN

The abandoned Kettara pyrrhotite mine, located near Marrakech, Morocco, is an acid mine drainage (AMD) producer site. A store-and-release cover system made of phosphate wastes was built to prevent water infiltration and the formation of AMD. This cover system should be vegetated with appropriate plants to ensure its long-term sustainability and allow its reintegration in the surrounding ecosystem. Several indigenous plant species were studied. The choice of plant species was based mainly on their tolerance to trace elements contained in the phosphate wastes, and their low capacity to translocate these metals to their aboveground parts in order to limit the risk of pollutants transfer along the food chain. The main metals and metalloids (As, Cd, Co, Cu, Pb, Zn, Ni, Cr) are determined in 13 dominant plants naturally colonizing the store-and-release cover and their rhizospheric soils. The results showed that the phosphate cover contained high concentrations of Cr (138.04 mg/kg), Cu (119.86 mg/kg) and Cd (10.67 mg/kg) exceeding the regulatory thresholds values (Cr > 100 mg/kg, Cu > 100 mg/kg, Cd > 3 mg/kg). The studied plants revealed no hyper-accumulation of metals and metalloids, and lower concentrations in shoots than in roots. Six species (Plantago afra, Festuca ovina, Aizoon hispanicum, Herniaria cinerea, Echium plantagineum and Asphodelus tenuifolius) have bioconcentration factors greater than 1, and weak translocation factors, identifying them as appropriate candidates for phytostabilization of the phosphate cover.

8.
J Biomed Mater Res A ; 109(10): 1942-1954, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33811724

RESUMEN

A composite based on hydroxyapatite (HA) and chitosan (CS) combined with ciprofloxacin (CIP) was formulated by the solid-liquid mixing method. The optimization of the solid to the liquid ratio and the use of chitosan in a small amount (≤5 wt%) promoted the preparation of stable and rigid monoliths. A synergistic effect of CS and CIP contents on the compressive strength of the CIP-loaded composite was evidenced. The compressive strength of the fabricated biocomposite ranged in values from 1 to 6 MPa, comparable to those reported for cancellous bone. The improvement of the mechanical properties with the increase of the rate of organic components was correlated with the diminution of the surface area and the reduction in the pore volume of the specimens. On the other hand, the in vitro release experiments of the antibiotic indicated a sustained and controlled release of CIP over 10 days. Moreover, in vitro antibacterial tests performed on the biocomposite HA-CS5-CIP showed significant inhibition of Staphylococcus aureus and Escherichia coli pathogens. According to the showed results, the formulated composite with three-phase components could be a promising material for bone repair and local antibiotic release for the treatment of bone infections.


Asunto(s)
Antibacterianos/farmacología , Fuerza Compresiva , Durapatita/química , Quitosano/química , Ciprofloxacina/química , Preparaciones de Acción Retardada/farmacología , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Termogravimetría , Difracción de Rayos X
9.
J Environ Manage ; 209: 227-235, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29304505

RESUMEN

High amounts of mine wastes are continuously produced by the mining industry all over the world. Recycling possibility of some wastes in fired brick making has been investigated and showed promising results. However, little attention is given to the leaching behavior of mine wastes based fired bricks. The objective of this paper is to evaluate the geochemical behavior of fired bricks containing different types of coal wastes. The leachates were analyzed for their concentration of As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Zn and sulfates using different leaching tests; namely Tank Leaching tests (NEN 7375), Toxicity Characteristic Leaching Procedure (TCLP) and pH dependence test (EPA, 1313). The results showed that the release of constituents of potential interest was highly reduced after thermal treatment and were immobilized within the glassy matrix of the fired bricks. Moreover, it was also highlighted that the final pH of all fired samples changed and stabilized around 8-8.5 when the initial pH of leaching solution was in the range 2.5-11.5. The release of heavy metals and metalloids (As) tended to decrease with the increase of pH from acidic to alkaline solutions while Mo displayed a different trend.


Asunto(s)
Ceniza del Carbón , Metales Pesados/química , Carbón Mineral , Concentración de Iones de Hidrógeno
10.
Environ Technol ; 33(16-18): 2077-88, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23240202

RESUMEN

The aim of this study was to assess the impact of three sources of pollution (landfill leachate, wastewater and mining activities) on the physico-chemical characteristics of surface water and groundwater in the northern region of Marrakech (Morocco). Numerous groundwater samples and surface water (Tensift River) samples were collected during the dry season and analysed. The groundwater samples had a high conductivity, which varied between 0.95 and 7.40 mS/cm; the conductivity of the surface water samples varied between 1.31 and 15.84 mS/cm. pH varied between 6.64 and 8.10 for groundwater and between 6.70 and 8.40 for surface water. The results showed that groundwater and surface water had a degraded quality in the region. Principal component analysis (PCA) enabled identification of the impact of pollution sources by combining the upstream and the downstream points. These results also showed that, in the study area, the effect of wastewater and the mine were dominated those of the landfill.


Asunto(s)
Agua Subterránea/análisis , Ríos/química , Aguas Residuales/análisis , Contaminación del Agua/análisis , Humanos , Minería , Marruecos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA