Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Trace Elem Res ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607527

RESUMEN

The occurrence of antibiotic resistance on common bacterial agents and the need to use new generations of antibiotics have led to the use of various strategies for production. Taking inspiration from nature, using bio-imitation patterns, in addition to the low cost of production, is advantageous and highly accurate. In this research, we were able to control the temperature, shake, and synthesis time of the synthesis conditions of Bacillus megaterium bacteria as a model for the synthesis of magnetic iron nanoparticles and optimize the ratio of reducing salt to bacterial regenerating agents as well as the concentration of salt to create iron oxide nanoparticles with more favorable properties and produced with more antibacterial properties. Bacterial growth was investigated by changing the incubation times of pre-culture and overnight culture in the range of the logarithmic phase. The synthesis time, salt ratio, and concentration were optimized to achieve the size, charge, colloidal stability, and magnetic and antibacterial properties of nanoparticles. The amount of the effective substance produced by the bacteria was selected by measuring the amount of the active substance synthesized using the free radical reduction (DPPH) method. With the help of DPPH, the duration of the synthesis was determined to be one week. Characterizations such as UV-vis spectroscopy, FTIR, FESEM, X-ray, and scattering optical dynamics were performed and showed that the nanoparticles synthesized with a salt concentration of 80 mM and a bacterial suspension to salt ratio of 2:1 are smaller in size and have a light scattering index, a PDI index close to 0.1, and a greater amount of reducing salt used in the reaction during one week compared to other samples. Moreover, they had more antibacterial properties than the concentration of 100 mM. As a result, better characteristics and more antibacterial properties than common antibiotics were created on E. coli and Bacillus cereus.

2.
AMB Express ; 12(1): 145, 2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402871

RESUMEN

The suitable structural characteristics of magnetic nanoparticles have resulted in their widespread use in magnetic hyperthermia therapy. Moreover, they are considered a proper and operational choice for pharmaceutical nanocarriers. Using the biomimetic method, we were able to produce iron oxide magnetic nanoparticles from the bacterial source of PTCC1250, Bacillus megaterium, for therangostic diagnosis systems and targeted drug delivery. Some of the benefits of this method include mitigated environmental and biological dangers, low toxicity, high biocompatibility, cheap and short-term mass production possibilities in each synthesis round compared to other biological sources, simple equipment required for the synthesis; and the possibility of industrial-scale production. Bacillus megaterium is a magnetotactic bacteria (MTB) that has a magnetosome organelle capable of orienting based on external magnetic fields, caused by the mineralization of magnetic nanocrystals. Utilizing this capability and adding an iron nitrate solution to the bacterial suspension, we synthesized iron oxide nanoparticles. The extent of synthesis was measured using UV-visible spectrophotometry. The morphology was evaluated using FESEM. The crystallized structure was characterized using RAMAN and XRD. The size and distribution of the nanoparticles were assessed using DLS. The surface charge of the nanoparticles was measured using zeta potential. The synthesis of iron oxide nanoparticles was confirmed using FT-IR, and the magnetic property was measured using VSM. This study is continued to identify industrial and clinical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA