Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Neuroinform ; 13: 24, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024286

RESUMEN

Motion analysis is used to study the functionality or dysfunctionality of the neuromuscular system, as human movements are the direct outcome of neuromuscular control. However, motion analysis often relies on measures that quantify simplified aspects of a motion, such as specific joint angles, despite the well-known complexity of segment interactions. In contrast, analyzing whole-body movement patterns may offer a new understanding of movement coordination and movement performance. Clinical research and sports technique evaluations suggest that principal component analysis (PCA) provides novel and valuable insights into control aspects of the neuromuscular system and how they relate to coordinative patterns. However, the implementation of PCA computations are time consuming, and require mathematical knowledge and programming skills, drastically limiting its application in current research. Therefore, the aim of this study is to present the Matlab software tool "PManalyzer" to facilitate and encourage the application of state-of-the-art PCA concepts in human movement science. The generalized PCA concepts implemented in the PManalyzer allow users to apply a variety of marker set independent PCA-variables on any kinematic data and to visualize the results with customizable plots. In addition, the extracted movement patterns can be explored with video options that may help testing hypotheses related to the interplay of segments. Furthermore, the software can be easily modified and adapted to any specific application.

2.
Front Aging Neurosci ; 10: 22, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29459826

RESUMEN

Optimal feedback control theory suggests that control of movement is focused on movement dimensions that are important for the task's success. The current study tested the hypotheses that age effects would emerge in the control of only specific movement components and that these components would be linked to the task relevance. Fifty healthy volunteers, 25 young and 25 older adults, performed a 80s-tandem stance while their postural movements were recorded using a standard motion capture system. The postural movements were decomposed by a principal component analysis into one-dimensional movement components, PMk, whose control was assessed through two variables, Nk and σk, which characterized the tightness and the regularity of the neuro-muscular control, respectively. The older volunteers showed less tight and more irregular control in PM2 (N2: -9.2%, p = 0.007; σ2: +14.3.0%, p = 0.017) but tighter control in PM8 and PM9 (N8: +4.7%, p = 0.020; N9: +2.5%, p = 0.043; σ9: -8.8%, p = 0.025). These results suggest that aging effects alter the postural control system not as a whole, but emerge in specific, task relevant components. The findings of the current study thus support the hypothesis that the minimal intervention principle, as described in the context of optimal feedback control (OFC), may be relevant when assessing aging effects on postural control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA