Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Small ; : e2405224, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246218

RESUMEN

A multimodal sensor array, combining pressure and proximity sensing, has attracted considerable interest due to its importance in ubiquitous monitoring of cardiopulmonary health- and sleep-related biometrics. However, the sensitivity and dynamic range of prevalent sensors are often insufficient to detect subtle body signals. This study introduces a novel capacitive nanocomposite proximity-pressure sensor (NPPS) for detecting multiple human biometrics. NPPS consists of a carbon nanotube-paper composite (CPC) electrode and a percolating multiwalled carbon nanotube (MWCNT) foam enclosed in a MWCNT-coated auxetic frame. The fractured fibers in the CPC electrode intensify an electric field, enabling highly sensitive detection of proximity and pressure. When pressure is applied to the sensor, the synergic effect of MWCNT foam and auxetic deformation amplifies the sensitivity. The simple and mass-producible fabrication protocol allows for building an array of highly sensitive sensors to monitor human presence, sleep posture, and vital signs, including ballistocardiography (BCG). With the aid of a machine learning algorithm, the sensor array accurately detects blood pressure (BP) without intervention. This advancement holds promise for unrestricted vital sign monitoring during sleep or driving.

2.
IEEE Trans Biomed Eng ; PP2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222460

RESUMEN

OBJECTIVE: To develop a novel synthetic multi-modal variable capable of capturing cardiovascular responses to acute mental stress and the stress-mitigating effect of transcutaneous median nerve stimulation (TMNS), as an initial step toward the overarching goal of enabling closed-loop controlled mitigation of the physiological response to acute mental stress. METHODS: Using data collected from 40 experiments in 20 participants involving acute mental stress and TMNS, we examined the ability of six plausibly explainable physio-markers to capture cardiovascular responses to acute mental stress and TMNS. Then, we developed a novel synthetic multi-modal variable by fusing the six physio-markers based on numerical optimization and compared its ability to capture cardiovascular responses to acute mental stress and TMNS against the six physio-markers in isolation. RESULTS: The synthetic multi-modal variable showed explainable responses to acute mental stress and TMNS in more experiments (24 vs ≤19). It also exhibited superior consistency, balanced sensitivity, and robustness compared to individual physio-markers. CONCLUSION: The results showed the promise of the synthetic multi-modal variable as a means to measure cardiovascular responses to acute mental stress and TMNS. However, the results also suggested the potential necessity to develop a personalized synthetic multi-modal variable. SIGNIFICANCE: The findings of this work may inform the realization of TMNS-enabled closed-loop control systems for the mitigation of sympathetic arousal to acute mental stress by leveraging physiological measurements that can readily be implemented in wearable form factors.

3.
ASME Lett Dyn Syst Control ; 4(3)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39262842

RESUMEN

Background: Physiological closed-loop control algorithms play an important role in the development of autonomous medical care systems, a promising area of research that has the potential to deliver healthcare therapies meeting each patient's specific needs. Computational approaches can support the evaluation of physiological closed-loop control algorithms considering various sources of patient variability that they may be presented with. Method of Approach: In this paper, we present a generative approach to testing the performance of physiological closed-loop control algorithms. This approach exploits a generative physiological model (which consists of stochastic and dynamic components that represent diverse physiological behaviors across a patient population) to generate a select group of virtual subjects. By testing a physiological closed-loop control algorithm against this select group, the approach estimates the distribution of relevant performance metrics in the represented population. We illustrate the promise of this approach by applying it to a practical case study on testing a closed-loop fluid resuscitation control algorithm designed for hemodynamic management. Results: In this context, we show that the proposed approach can test the algorithm against virtual subjects equipped with a wide range of plausible physiological characteristics and behavior, and that the test results can be used to estimate the distribution of relevant performance metrics in the represented population. Conclusions: In sum, the generative testing approach may offer a practical, efficient solution for conducting pre-clinical tests on physiological closed-loop control algorithms.

4.
Diagnostics (Basel) ; 14(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39272754

RESUMEN

This paper investigates the feasibility of detecting and estimating the rate of internal hemorrhage based on continuous noninvasive hematocrit measurement. A unique challenge in hematocrit-based hemorrhage detection is that hematocrit decreases in response to hemorrhage and resuscitation with fluids, which makes hemorrhage detection during resuscitation challenging. We developed two sequential inference algorithms for detection of internal hemorrhage based on the Luenberger observer and the extended Kalman filter. The sequential inference algorithms use fluid resuscitation dose and hematocrit measurement as inputs to generate signatures to enable detection of internal hemorrhage. In the case of the extended Kalman filter, the signature is nothing but inferred hemorrhage rate, which allows it to also estimate internal hemorrhage rate. We evaluated the proof-of-concept of these algorithms based on in silico evaluation in 100 virtual patients subject to diverse hemorrhage and resuscitation rates. The results showed that the sequential inference algorithms outperformed naïve internal hemorrhage detection based on the decrease in hematocrit when hematocrit noise level was 1% (average F1 score: Luenberger observer 0.80; extended Kalman filter 0.76; hematocrit 0.59). Relative to the Luenberger observer, the extended Kalman filter demonstrated comparable internal hemorrhage detection performance and superior accuracy in estimating the hemorrhage rate. The analysis of the dependence of the sequential inference algorithms on measurement noise and plant parametric uncertainty showed that small (≤1%) hematocrit noise level and personalization of sequential inference algorithms may enable continuous noninvasive detection of internal hemorrhage and estimation of its rate.

5.
J Am Heart Assoc ; : e031981, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087582

RESUMEN

The past several decades have seen rapid advances in diagnosis and treatment of cardiovascular diseases and stroke, enabled by technological breakthroughs in imaging, genomics, and physiological monitoring, coupled with therapeutic interventions. We now face the challenge of how to (1) rapidly process large, complex multimodal and multiscale medical measurements; (2) map all available data streams to the trajectories of disease states over the patient's lifetime; and (3) apply this information for optimal clinical interventions and outcomes. Here we review new advances that may address these challenges using digital twin technology to fulfill the promise of personalized cardiovascular medical practice. Rooted in engineering mechanics and manufacturing, the digital twin is a virtual representation engineered to model and simulate its physical counterpart. Recent breakthroughs in scientific computation, artificial intelligence, and sensor technology have enabled rapid bidirectional interactions between the virtual-physical counterparts with measurements of the physical twin that inform and improve its virtual twin, which in turn provide updated virtual projections of disease trajectories and anticipated clinical outcomes. Verification, validation, and uncertainty quantification builds confidence and trust by clinicians and patients in the digital twin and establishes boundaries for the use of simulations in cardiovascular medicine. Mechanistic physiological models form the fundamental building blocks of the personalized digital twin that continuously forecast optimal management of cardiovascular health using individualized data streams. We present exemplars from the existing body of literature pertaining to mechanistic model development for cardiovascular dynamics and summarize existing technical challenges and opportunities pertaining to the foundation of a digital twin.

6.
IEEE Access ; 12: 62511-62525, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872754

RESUMEN

Physiological closed-loop controlled (PCLC) medical devices, such as those designed for blood pressure regulation, can be tested for safety and efficacy in real-world clinical settings. However, relying solely on limited animal and clinical studies may not capture the diverse range of physiological conditions. Credible mathematical models can complement these studies by allowing the testing of the device against simulated patient scenarios. This research involves the development and validation of a low-order lumped-parameter mathematical model of the cardiovascular system's response to fluid perturbation. The model takes rates of hemorrhage and fluid infusion as inputs and provides hematocrit and blood volume, heart rate, stroke volume, cardiac output and mean arterial blood pressure as outputs. The model was calibrated using data from 27 sheep subjects, and its predictive capability was evaluated through a leave-one-out cross-validation procedure, followed by independent validation using 12 swine subjects. Our findings showed small model calibration error against the training dataset, with the normalized root-mean-square error (NRMSE) less than 10% across all variables. The mathematical model and virtual patient cohort generation tool demonstrated a high level of predictive capability and successfully generated a sufficient number of subjects that closely resembled the test dataset. The average NRMSE for the best virtual subject, across two distinct samples of virtual subjects, was below 12.7% and 11.9% for the leave-one-out cross-validation and independent validation dataset. These findings suggest that the model and virtual cohort generator are suitable for simulating patient populations under fluid perturbation, indicating their potential value in PCLC medical device evaluation.

7.
Biosensors (Basel) ; 14(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38391980

RESUMEN

Hypovolemic shock is one of the leading causes of death in the military. The current methods of assessing hypovolemia in field settings rely on a clinician assessment of vital signs, which is an unreliable assessment of hypovolemia severity. These methods often detect hypovolemia when interventional methods are ineffective. Therefore, there is a need to develop real-time sensing methods for the early detection of hypovolemia. Previously, our group developed a random-forest model that successfully estimated absolute blood-volume status (ABVS) from noninvasive wearable sensor data for a porcine model (n = 6). However, this model required normalizing ABVS data using individual baseline data, which may not be present in crisis situations where a wearable sensor might be placed on a patient by the attending clinician. We address this barrier by examining seven individual baseline-free normalization techniques. Using a feature-specific global mean from the ABVS and an external dataset for normalization demonstrated similar performance metrics compared to no normalization (normalization: R2 = 0.82 ± 0.025|0.80 ± 0.032, AUC = 0.86 ± 5.5 × 10-3|0.86 ± 0.013, RMSE = 28.30 ± 0.63%|27.68 ± 0.80%; no normalization: R2 = 0.81 ± 0.045, AUC = 0.86 ± 8.9 × 10-3, RMSE = 28.89 ± 0.84%). This demonstrates that normalization may not be required and develops a foundation for individual baseline-free ABVS prediction.


Asunto(s)
Hipovolemia , Signos Vitales , Humanos , Porcinos , Animales , Hipovolemia/diagnóstico , Hipovolemia/etiología , Diagnóstico Precoz
8.
Physiol Meas ; 45(2)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38306663

RESUMEN

Objective. To develop analytical formulas which can serve as quantitative guidelines for the selection of the sampling rate for the electrocardiogram (ECG) required to calculate heart rate (HR) and heart rate variability (HRV) with a desired level of accuracy.Approach. We developed analytical formulas which relate the ECG sampling rate to conservative bounds on HR and HRV errors: (i) one relating HR and sampling rate to a HR error bound and (ii) the others relating sampling rate to HRV error bounds (in terms of root-mean-square of successive differences (RMSSD) and standard deviation of normal sinus beats (SDNN)). We validated the formulas using experimental data collected from 58 young healthy volunteers which encompass a wide HR and HRV ranges through strenuous exercise.Main results. The results strongly supported the validity of the analytical formulas as well as their tightness. The formulas can be used to (i) predict an upper bound of inaccuracy in HR and HRV for a given sampling rate in conjunction with HR and HRV as well as to (ii) determine a sampling rate to achieve a desired accuracy requirement at a given HR or HRV (or its range).Significance. HR and its variability (HRV) derived from the ECG have been widely utilized in a wide range of research in physiology and psychophysiology. However, there is no established guideline for the selection of the sampling rate for the ECG required to calculate HR and HRV with a desired level of accuracy. Hence, the analytical formulas may guide in selecting sampling rates for the ECG tailored to various applications of HR and HRV.


Asunto(s)
Electrocardiografía , Ejercicio Físico , Humanos , Frecuencia Cardíaca/fisiología , Electrocardiografía/métodos
9.
J Intensive Care Med ; 39(7): 683-692, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38282376

RESUMEN

Background: Published evidence indicates that mean arterial pressure (MAP) below a goal range (hypotension) is associated with worse outcomes, though MAP management failures are common. We sought to characterize hypotension occurrences in ICUs and consider the implications for MAP management. Methods: Retrospective analysis of 3 hospitals' cohorts of adult ICU patients during continuous vasopressor infusion. Two cohorts were general, mixed ICU patients and one was exclusively acute spinal cord injury patients. "Hypotension-clusters" were defined where there were ≥10 min of cumulative hypotension over a 60-min period and "constant hypotension" was ≥10 continuous minutes. Trend analysis was performed (predicting future MAP using 14 min of preceding MAP data) to understand which hypotension-clusters could likely have been predicted by clinician awareness of MAP trends. Results: In cohorts of 155, 66, and 16 ICU stays, respectively, the majority of hypotension occurred within the hypotension-clusters. Failures to keep MAP above the hypotension threshold were notable in the bottom quartiles of each cohort, with hypotension durations of 436, 167, and 468 min, respectively, occurring within hypotension-clusters per day. Mean arterial pressure trend analysis identified most hypotension-clusters before any constant hypotension occurred (81.2%-93.6% sensitivity, range). The positive predictive value of hypotension predictions ranged from 51.4% to 72.9%. Conclusions: Across 3 cohorts, most hypotension occurred in temporal clusters of hypotension that were usually predictable from extrapolation of MAP trends.


Asunto(s)
Presión Arterial , Hipotensión , Unidades de Cuidados Intensivos , Vasoconstrictores , Humanos , Vasoconstrictores/administración & dosificación , Vasoconstrictores/efectos adversos , Vasoconstrictores/uso terapéutico , Estudios Retrospectivos , Femenino , Persona de Mediana Edad , Masculino , Anciano , Presión Arterial/efectos de los fármacos , Adulto , Infusiones Intravenosas
10.
IEEE Trans Biomed Eng ; 71(2): 477-483, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37610893

RESUMEN

OBJECTIVE: To develop a novel physical model-based approach to enable 1-point calibration of pulse transit time (PTT) to blood pressure (BP). METHODS: The proposed PTT-BP calibration model is derived by combining the Bramwell-Hill equation and a phenomenological model of the arterial compliance (AC) curve. By imposing a physiologically plausible constraint on the skewness of AC at positive and negative transmural pressures, the number of tunable parameters in the PTT-BP calibration model reduces to 1. Hence, as opposed to most existing PTT-BP calibration models requiring multiple (≥2) PTT-BP measurements to personalize, the PTT-BP calibration model can be personalized to an individual subject using a single PTT-BP measurement pair. Equipped with the physically relevant PTT-AC and AC-BP relationships, the proposed approach may serve as a universal means to calibrate PTT to BP over a wide BP range. The validity and proof-of-concept of the proposed approach were evaluated using PTT and BP measurements collected from 22 healthy young volunteers undergoing large BP changes. RESULTS: The proposed approach modestly yet significantly outperformed an empiric linear PTT-BP calibration with a group-average slope and subject-specific intercept in terms of bias (5.5 mmHg vs 6.4 mmHg), precision (8.4 mmHg vs 9.4 mmHg), mean absolute error (7.8 mmHg vs 8.8 mmHg), and root-mean-squared error (8.7 mmHg vs 10.3 mmHg, all in the case of diastolic BP). CONCLUSION: We demonstrated the preliminary proof-of-concept of an innovative physical model-based approach to one-point PTT-BP calibration. SIGNIFICANCE: The proposed physical model-based approach has the potential to enable more accurate and convenient calibration of PTT to BP.


Asunto(s)
Arterias , Determinación de la Presión Sanguínea , Humanos , Presión Sanguínea/fisiología , Calibración , Análisis de la Onda del Pulso
11.
Comput Biol Med ; 168: 107813, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38086141

RESUMEN

This paper intends to investigate the feasibility of peripheral artery disease (PAD) diagnosis based on the analysis of non-invasive arterial pulse waveforms. We generated realistic synthetic arterial blood pressure (BP) and pulse volume recording (PVR) waveform signals pertaining to PAD present at the abdominal aorta with a wide range of severity levels using a mathematical model that simulates arterial blood circulation and arterial BP-PVR relationships. We developed a deep learning (DL)-enabled algorithm that can diagnose PAD by analyzing brachial and tibial PVR waveforms, and evaluated its efficacy in comparison with the same DL-enabled algorithm based on brachial and tibial arterial BP waveforms as well as the ankle-brachial index (ABI). The results suggested that it is possible to detect PAD based on DL-enabled PVR waveform analysis with adequate accuracy, and its detection efficacy is close to when arterial BP is used (positive and negative predictive values at 40 % abdominal aorta occlusion: 0.78 vs 0.89 and 0.85 vs 0.94; area under the ROC curve (AUC): 0.90 vs 0.97). On the other hand, its efficacy in estimating PAD severity level is not as good as when arterial BP is used (r value: 0.77 vs 0.93; Bland-Altman limits of agreement: -32%-+32 % vs -20%-+19 %). In addition, DL-enabled PVR waveform analysis significantly outperformed ABI in both detection and severity estimation. In sum, the findings from this paper suggest the potential of DL-enabled non-invasive arterial pulse waveform analysis as an affordable and non-invasive means for PAD diagnosis.


Asunto(s)
Aprendizaje Profundo , Enfermedad Arterial Periférica , Humanos , Enfermedad Arterial Periférica/diagnóstico , Índice Tobillo Braquial , Presión Sanguínea , Valor Predictivo de las Pruebas
12.
Artículo en Inglés | MEDLINE | ID: mdl-38083108

RESUMEN

Millions around the world suffer from traumatic stress (stress caused by traumatic memories). Transcutaneous cervical vagus nerve stimulation (tcVNS) has been shown to counteract physiological changes associated with traumatic stress. However, little is known regarding the approximate timecourse of tcVNS effects. This knowledge of how quickly tcVNS takes effect is needed to optimize closed-loop tcVNS systems that can mitigate traumatic stress in a timely manner. To address this gap, we studied N=26 participants with history of prior trauma. Participants wore electrocardiogram, photoplethysmogram, seismocardiogram, and respiratory effort sensors throughout a double-blind protocol involving traumatic stress and active tcVNS (n=12) or sham stimulation (n=14). From the physiological signals, we extracted cardiovascular and respiratory markers and studied their dynamics during the traumatic stress and stimulation conditions. We decoupled the short-term transient responses from longer-term cumulative changes by centering each condition's response with respect to data immediately prior to the condition. We thereby elucidate a diverse set of transient physiological responses to tcVNS and traumatic stress. These responses demonstrate that tcVNS-induced changes occur within seconds and have the potential to reduce acute physiological manifestations of traumatic stress.Clinical relevance- Traumatic stress can overpower an individual within seconds and often occurs outside the clinic. This analysis focuses on transient physiological responses to traumatic memories and tcVNS captured using multimodal physiological sensing. We demonstrate that tcVNS-induced changes occur within seconds and have the potential to mitigate some of the short-term effects of traumatic stress.


Asunto(s)
Cuello , Nervio Vago , Humanos , Nervio Vago/fisiología , Ansiedad , Corazón , Biomarcadores
13.
Sensors (Basel) ; 23(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067755

RESUMEN

This paper describes a signal quality classification method for arm ballistocardiogram (BCG), which has the potential for non-invasive and continuous blood pressure measurement. An advantage of the BCG signal for wearable devices is that it can easily be measured using accelerometers. However, the BCG signal is also susceptible to noise caused by motion artifacts. This distortion leads to errors in blood pressure estimation, thereby lowering the performance of blood pressure measurement based on BCG. In this study, to prevent such performance degradation, a binary classification model was created to distinguish between high-quality versus low-quality BCG signals. To estimate the most accurate model, four time-series imaging methods (recurrence plot, the Gramain angular summation field, the Gramain angular difference field, and the Markov transition field) were studied to convert the temporal BCG signal associated with each heartbeat into a 448 × 448 pixel image, and the image was classified using CNN models such as ResNet, SqueezeNet, DenseNet, and LeNet. A total of 9626 BCG beats were used for training, validation, and testing. The experimental results showed that the ResNet and SqueezeNet models with the Gramain angular difference field method achieved a binary classification accuracy of up to 87.5%.


Asunto(s)
Algoritmos , Balistocardiografía , Balistocardiografía/métodos , Frecuencia Cardíaca/fisiología , Artefactos , Movimiento (Física)
14.
Front Neurosci ; 17: 1213982, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37746156

RESUMEN

Stress is a major determinant of health and wellbeing. Conventional stress management approaches do not account for the daily-living acute changes in stress that affect quality of life. The combination of physiological monitoring and non-invasive Peripheral Nerve Stimulation (PNS) represents a promising technological approach to quantify stress-induced physiological manifestations and reduce stress during everyday life. This study aimed to evaluate the effectiveness of three well-established transcutaneous PNS modalities in reducing physiological manifestations of stress compared to a sham: auricular and cervical Vagus Nerve Stimulation (taVNS and tcVNS), and Median Nerve Stimulation (tMNS). Using a single-blind sham-controlled crossover study with four visits, we compared the stress mitigation effectiveness of taVNS, tcVNS, and tMNS, quantified through physiological markers derived from five physiological signals peripherally measured on 19 young healthy volunteers. Participants underwent three acute mental and physiological stressors while receiving stimulation. Blinding effectiveness was assessed via subjective survey. taVNS and tMNS relative to sham resulted in significant changes that suggest a reduction in sympathetic outflow following the acute stressors: Left Ventricular Ejection Time Index (LVETI) shortening (tMNS: p = 0.007, taVNS: p = 0.015) and Pre-Ejection Period (PEP)-to-LVET ratio (PEP/LVET) increase (tMNS: p = 0.044, taVNS: p = 0.029). tMNS relative to sham also reduced Pulse Pressure (PP; p = 0.032) and tonic EDA activity (tonicMean; p = 0.025). The nonsignificant blinding survey results suggest these effects were not influenced by placebo. taVNS and tMNS effectively reduced stress-induced sympathetic arousal in wearable-compatible physiological signals, motivating their future use in novel personalized stress therapies to improve quality of life.

15.
J Hypertens ; 41(12): 2074-2087, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37303198

RESUMEN

BACKGROUND: There is intense effort to develop cuffless blood pressure (BP) measuring devices, and several are already on the market claiming that they provide accurate measurements. These devices are heterogeneous in measurement principle, intended use, functions, and calibration, and have special accuracy issues requiring different validation than classic cuff BP monitors. To date, there are no generally accepted protocols for their validation to ensure adequate accuracy for clinical use. OBJECTIVE: This statement by the European Society of Hypertension (ESH) Working Group on BP Monitoring and Cardiovascular Variability recommends procedures for validating intermittent cuffless BP devices (providing measurements every >30 sec and usually 30-60 min, or upon user initiation), which are most common. VALIDATION PROCEDURES: Six validation tests are defined for evaluating different aspects of intermittent cuffless devices: static test (absolute BP accuracy); device position test (hydrostatic pressure effect robustness); treatment test (BP decrease accuracy); awake/asleep test (BP change accuracy); exercise test (BP increase accuracy); and recalibration test (cuff calibration stability over time). Not all these tests are required for a given device. The necessary tests depend on whether the device requires individual user calibration, measures automatically or manually, and takes measurements in more than one position. CONCLUSION: The validation of cuffless BP devices is complex and needs to be tailored according to their functions and calibration. These ESH recommendations present specific, clinically meaningful, and pragmatic validation procedures for different types of intermittent cuffless devices to ensure that only accurate devices will be used in the evaluation and management of hypertension.


Asunto(s)
Determinación de la Presión Sanguínea , Hipertensión , Humanos , Presión Sanguínea/fisiología , Hipertensión/diagnóstico , Esfigmomanometros , Monitores de Presión Sanguínea
16.
IEEE Trans Biomed Eng ; 70(8): 2298-2309, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37022451

RESUMEN

OBJECTIVE: To present the population-informed particle filter (PIPF), a novel filtering approach that incorporates past experiences with patients into the filtering process to provide reliable beliefs about a new patient's physiological state. METHODS: To derive the PIPF, we formulate the filtering problem as recursive inference on a probabilistic graphical model, which includes representations for the pertinent physiological dynamics and the hierarchical relationship between past and present patient characteristics. Then, we provide an algorithmic solution to the filtering problem using Sequential Monte-Carlo techniques. To demonstrate the merits of the PIPF approach, we apply it to a case study of physiological monitoring for hemodynamic management. RESULTS: The PIPF approach could provide reliable beliefs about the likely values and uncertainties associated with a patient's unmeasured physiological variables (e.g., hematocrit and cardiac output), characteristics (e.g., tendency for atypical behavior), and events (e.g., hemorrhage) given low-information measurements. CONCLUSION: The PIPF shows promise in the presented case study, and may have applications to a wider range of real-time monitoring problems with limited measurements. SIGNIFICANCE: Forming reliable beliefs about a patient's physiological state is an essential aspect of algorithmic decision-making in medical care settings. Hence, the PIPF may serve as a solid basis for designing interpretable and context-aware physiological monitoring, medical decision-support, and closed-loop control algorithms.


Asunto(s)
Algoritmos , Modelos Estadísticos , Humanos , Monitoreo Fisiológico , Incertidumbre
17.
IEEE Trans Biomed Eng ; 70(5): 1565-1574, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36383592

RESUMEN

OBJECTIVE: To develop a high-fidelity mathematical model intended to replicate the cardiovascular (CV) responses of a critically ill patient to vasoplegic shock-induced hypotension and vasopressor therapy. METHODS: The mathematical model consists of a lumped-parameter CV physiology model with baroreflex modulation feedback and a phenomenological dynamic dose-response model of a vasopressor. The adequacy of the proposed mathematical model was investigated using an experimental dataset acquired from 10 pigs receiving phenylephrine (PHP) therapy after vasoplegic shock induced via sodium nitroprusside (SNP). RESULTS: Upon calibration, the mathematical model could (i) faithfully replicate the effects of PHP on dynamic changes in blood pressure (BP), cardiac output (CO), and systemic vascular resistance (SVR) (root-mean-squared errors between measured and calibrated mathematical responses: mean arterial BP 2.5+/-1.0 mmHg, CO 0.2+/-0.1 lpm, SVR 2.4+/-1.5 mmHg/lpm; r value: mean arterial BP 0.96+/-0.01, CO 0.65+/-0.45, TPR 0.92+/-0.10) and (ii) predict physiologically plausible behaviors of unmeasured internal CV variables as well as secondary baroreflex modulation effects. CONCLUSION: This mathematical model is perhaps the first of its kind that can comprehensively replicate both primary (i.e., direct) and secondary (i.e., baroreflex modulation) effects of a vasopressor drug on an array of CV variables, rendering it ideally suited to pre-clinical virtual evaluation of the safety and efficacy of closed-loop control algorithms for autonomous vasopressor administration once it is extensively validated. SIGNIFICANCE: This mathematical model architecture incorporating both direct and baroreflex modulation effects may generalize to serve as part of an effective platform for high-fidelity in silico simulation of CV responses to vasopressors during vasoplegic shock.


Asunto(s)
Barorreflejo , Vasoconstrictores , Animales , Porcinos , Presión Sanguínea/fisiología , Vasoconstrictores/farmacología , Barorreflejo/fisiología , Simulación por Computador , Modelos Cardiovasculares
18.
IEEE Trans Biomed Eng ; 70(2): 715-722, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36006885

RESUMEN

OBJECTIVE: Oscillogram modeling is a powerful tool for understanding and advancing popular oscillometric blood pressure (BP) measurement. A reduced oscillogram model relating cuff pressure oscillation amplitude ( ∆O) to external cuff pressure of the artery ( Pe) is: [Formula: see text], where g(P) is the arterial compliance versus transmural pressure ( P) curve, Ps and Pd are systolic and diastolic BP, and k is the reciprocal of the cuff compliance. The objective was to determine an optimal functional form for the arterial compliance curve. METHODS: Eight prospective, three-parameter functions of the brachial artery compliance curve were compared. The study data included oscillometric arm cuff pressure waveforms and invasive brachial BP from 122 patients covering a 20-120 mmHg pulse pressure range. The oscillogram measurements were constructed from the cuff pressure waveforms. Reduced oscillogram models, inputted with measured systolic and diastolic BP and each parametric brachial artery compliance curve function, were optimally fitted to the oscillogram measurements in the least squares sense. RESULTS: An exponential-linear function yielded as good or better model fits compared to the other functions, with errors of 7.9±0.3 and 5.1±0.2% for tail-trimmed and lower half-trimmed oscillogram measurements. Importantly, this function was also the most tractable mathematically. CONCLUSION: A three-parameter exponential-linear function is an optimal form for the arterial compliance curve in the reduced oscillogram model and may thus serve as the standard function for this model henceforth. SIGNIFICANCE: The complete, reduced oscillogram model determined herein can potentially improve oscillometric BP measurement accuracy while advancing foundational knowledge.


Asunto(s)
Presión Arterial , Determinación de la Presión Sanguínea , Humanos , Presión Sanguínea/fisiología , Estudios Prospectivos , Arteria Braquial/fisiología
19.
J Burn Care Res ; 44(3): 599-609, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35809084

RESUMEN

While urinary output (UOP) remains the primary endpoint for titration of intravenous fluid resuscitation, it is an insufficient indicator of fluid responsiveness. Although advanced hemodynamic monitoring (including arterial pulse wave analysis [PWA]) is of recent interest, the validity of PWA-derived indices in burn resuscitation extremes has not been established. The goal of this paper is to test the hypothesis that PWA-derived cardiac output (CO) and stroke volume (SV) indices as well as pulse pressure variation (PPV) and systolic pressure variation (SPV) can play a complementary role to UOP in burn resuscitation. Swine were instrumented with a Swan-Ganz catheter for reference CO and underwent a 40% TBSA burns with varying resuscitation paradigms, and were monitored for 24 hours in an ICU setting under mechanical ventilation. The longitudinal changes in PWA-derived indices were investigated, and resuscitation adequacy was compared as determined by UOP vs PWA indices. The results indicated that PWA-derived indices exhibited trends consistent with reference CO and SV measurements: CO and SV indices were proportional to reference CO and SV, respectively (CO: postcalibration limits of agreement [LoA] = ±24.7 [ml/min/kg], SV: postcalibration LoA = ±0.30 [ml/kg]) while PPV and SPV were inversely proportional to reference SV (PPV: postcalibration LoA = ±0.32 [ml/kg], SPV: postcalibration LoA = ±0.31 [ml/kg]). The results also indicated that PWA-derived indices exhibited notable discrepancies from UOP in determining adequate burn resuscitation. Hence, it was concluded that the PWA-derived indices may have complementary value to UOP in assessing and guiding burn resuscitation.


Asunto(s)
Quemaduras , Animales , Porcinos , Quemaduras/terapia , Presión Sanguínea , Respiración Artificial , Arterias , Resucitación/métodos , Fluidoterapia/métodos , Análisis de la Onda del Pulso , Hemodinámica
20.
Sci Rep ; 12(1): 21463, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36509856

RESUMEN

Physiological closed-loop controlled (PCLC) medical devices monitor and automatically adjust the patient's condition by using physiological variables as feedback, ideally with minimal human intervention to achieve the target levels set by a clinician. PCLC devices present a challenge when it comes to evaluating their performance, where conducting large clinical trials can be expensive. Virtual physiological patients simulated by validated mathematical models can be utilized to obtain pre-clinical evidence of safety and assess the performance of the PCLC medical device during normal and worst-case conditions that are unlikely to happen in a limited clinical trial. A physiological variable that plays a major role during fluid resuscitation is heart rate (HR). For in silico assessment of PCLC medical devices regarding fluid perturbation, there is currently no mathematical model of HR validated in terms of its predictive capability performance. This paper develops and validates a mathematical model of HR response using data collected from sheep subjects undergoing hemorrhage and fluid infusion. The model proved to be accurate in estimating the HR response to fluid perturbation, where averaged between 21 calibration datasets, the fitting performance showed a normalized root mean square error (NRMSE) of [Formula: see text]. The model was also evaluated in terms of model predictive capability performance via a leave-one-out procedure (21 subjects) and an independent validation dataset (6 subjects). Two different virtual cohort generation tools were used in each validation analysis. The generated envelope of virtual subjects robustly met the defined acceptance criteria, in which [Formula: see text] of the testing datasets presented simulated HR patterns that were within a deviation of 50% from the observed data. In addition, out of 16000 and 18522 simulated subjects for the leave-one-out and independent datasets, the model was able to generate at least one virtual subject that was close to the real subject within an error margin of [Formula: see text] and [Formula: see text] NRMSE, respectively. In conclusion, the model can generate valid virtual HR physiological responses to fluid perturbation and be incorporated into future non-clinical simulated testing setups for assessing PCLC devices intended for fluid resuscitation.


Asunto(s)
Frecuencia Cardíaca , Humanos , Ovinos , Animales , Frecuencia Cardíaca/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA