Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37296951

RESUMEN

Mutations of the FLT3 gene are among the most common genetic aberrations detected in AML and occur mainly as internal tandem duplications (FLT3-ITD). However, the specific sites of FLT3-ITD insertion within FLT3 show marked heterogeneity regarding both biological and clinical features. In contrast to the common assumption that ITD insertion sites (IS) are restricted to the juxtamembrane domain (JMD) of FLT3, 30% of FLT3-ITD mutations insert at the non-JMD level, thereby integrating into various segments of the tyrosine kinase subdomain 1 (TKD1). ITDs inserted within TKD1 have been shown to be associated with inferior complete remission rates as well as shorter relapse-free and overall survival. Furthermore, resistance to chemotherapy and tyrosine kinase inhibition (TKI) is linked to non-JMD IS. Although FLT3-ITD mutations in general are already recognized as a negative prognostic marker in currently used risk stratification guidelines, the even worse prognostic impact of non-JMD-inserting FLT3-ITD has not yet been particularly considered. Recently, the molecular and biological assessment of TKI resistance highlighted the pivotal role of activated WEE1 kinase in non-JMD-inserting ITDs. Overcoming therapy resistance in non-JMD FLT3-ITD-mutated AML may lead to more effective genotype- and patient-specific treatment approaches.

4.
Blood Adv ; 6(2): 399-404, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34559181

RESUMEN

Somatic mutations in JAK2, MPL and Calreticulin and inflammation play a key role in pathophysiology of chronic myeloproliferative neoplasia (CMN). One of the most prominent cytokines elevated in serum of Polycythemia vera patients is interleukin-6 (IL-6). Currently, it is being discussed whether suppression of inflammation by anti-cytokine approaches as anti-IL-6 treatment may be therapeutically useful in CMN. We here sought to investigate the efficacy of anti-IL-6 treatment on inflammatory cytokines, hematocrit and splenomegaly in CMN like disease. JAK2-V617F knock-in mice (JAK2+/V617F) were treated for three weeks with anti-IL-6 antibody (Ab) or IgG-control. Upon anti-IL-6 Ab treatment, serum levels of CXCL2 and CXCL10 were significantly reduced. In addition, CXCL1, CCL11, M-CSF, G-CSF, IL-17, IL-12p40 and CCL2 were reduced by a factor of 0.3 -- 0.8. Partly, this was also achieved by applying high-dose IgG. Hematocrit, erythrocyte and leukocyte counts were elevated in JAK2+/V617F mice but were not reduced by anti-IL6 Ab treatment. In addition, there was no apparent amelioration of splenomegaly and spleen histopathology. In conclusion, anti-IL-6 Ab treatment did not result in improvement of hematological disease parameters but was shown to modulate the serum cytokine signature.


Asunto(s)
Trastornos Mieloproliferativos , Policitemia Vera , Animales , Citocinas , Modelos Animales de Enfermedad , Hematócrito , Humanos , Inmunoglobulina G/uso terapéutico , Inflamación , Interleucina-6 , Ratones , Trastornos Mieloproliferativos/tratamiento farmacológico , Policitemia Vera/complicaciones , Policitemia Vera/tratamiento farmacológico , Policitemia Vera/genética , Esplenomegalia/tratamiento farmacológico , Esplenomegalia/etiología
5.
Blood Adv ; 5(23): 5349-5359, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34592754

RESUMEN

Chronic nonresolving inflammatory syndrome is a major disease feature in myeloproliferative neoplasms (MPNs). Systemic inflammation promotes the growth of the JAK2-V617F+ hematopoietic stem cell clone and is associated with constitutive symptoms (eg, fever, cachexia, and fatigue). Therefore, it is being discussed whether anti-inflammatory therapy, in addition to the well-established JAK inhibitor therapy, may be beneficial in the control of constitutive symptoms. Moreover, effective control of the inflammatory microenvironment may contribute to prevent transformation into secondary myelofibrosis and acute leukemia. Given the pivotal role of tumor necrosis factor α (TNF-α) in MPN and the distinct roles of TNF-α receptor 1 (TNFR1) and TNFR2 in inflammation, we investigated the therapeutic effects of αTNFR1 and αTNFR2 antibody treatment in MPN-like disease using the JAK2+/VF knock-in mouse model. Peripheral blood counts, bone marrow/spleen histopathology, and inflammatory cytokine levels in serum were investigated. αTNFR2 antibody treatment decreased white blood cells and modulated the serum levels of several cytokines [CXCL2, CXCL5, interleukin-12(p40)], as well as of macrophage colony-stimulating factor, but they lacked efficacy to ameliorate hematocrit and splenomegaly. αTNFR1 antibody treatment resulted in the mild suppression of elevated hematocrit of -10.7% and attenuated splenomegaly (22% reduction in spleen weight). In conclusion, our studies show that TNFR1 and TNFR2 play different roles in the biology of JAK2-V617F-induced disease that may be of relevance in future therapeutic settings.


Asunto(s)
Trastornos Mieloproliferativos , Mielofibrosis Primaria , Animales , Antiinflamatorios , Ratones , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética , Mielofibrosis Primaria/tratamiento farmacológico , Mielofibrosis Primaria/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA