Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 1037989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325559

RESUMEN

Hexaploid wheat is a major food crop and is sensitive to heat stress. It is necessary to discover genes related to thermotolerance in wheat. Fes1s is a class of nucleotide exchange factor of heat shock protein 70s, proven to be participated in heat response in human, yeast, and Arabidopsis. However, little is known about Fes1s in hexaploid wheat. In this study, we identified nine Fes1s in hexaploid wheat (TaFes1s) and found that they present as three triads. A phylogenetic relationship analysis revealed that these Fes1s grouped into Fes1A, Fes1B and Fes1C subclades, and Fes1As and Fes1Bs were divergent in monocots, but possibly not in dicots. The sequences, gene structures and protein motifs of TaFes1s homoeologues within a triad were highly conserved. Through cis-elements analysis including heat shock elements, and miRNA targets prediction, we found that regulation of three TaFes1s homoeologues may be different, while the expression patterns of three homoeologues were similar. The expression levels of TaFes1As were higher than those of TaFes1Bs and TaFes1Cs, and based on these expressions, TaFes1As were chosen for functional characterization. Intriguingly, neither TaFes1A-5A nor TaFes1A-5D could not rescue the thermotolerance defect of Arabidopsis fes1a mutants at seedling stage, but in the transgenic plants seed germination was accelerated under normal and heat stress condition. The functional characterization indicated that roles of Fes1As would be different in Arabidopsis and hexaploid wheat, and function retention of TaFes1As may occur during wheat evolution. In conclusion, our study comprehensively characterized the distribution and expression of Fes1s in hexaploid wheat and found that two TaFes1As could accelerate seed germination under normal and heat stress condition.

2.
Cells ; 11(5)2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35269442

RESUMEN

HSP70s play crucial roles in plant growth and development, as well as in stress response. Knowledge of the distribution and heat response of HSP70s is important to understand heat adaptation and facilitate thermotolerance improvement in wheat. In this study, we comprehensively analyzed the distribution of HSP70s in hexaploid wheat (TaHSP70s) and its relatives, and we found an obvious expansion of TaHSP70s in the D genome of hexaploid wheat. Meanwhile, a large portion of tandem duplication events occurred in hexaploid wheat. Among the 84 identified TaHSP70s, more than 64% were present as homeologs. The expression profiles of TaHSP70s in triads tended to be expressed more in non-stressful and heat stress conditions. Intriguingly, many TaHSP70s were especially heat responsive. Tandem duplicated TaHSP70s also participated in heat response and growth development. Further HSE analysis revealed divergent distribution of HSEs in the promoter regions of TaHSP70 homeologs, which suggested a distinct heat regulatory mechanism. Our results indicated that the heat response of TaHSP70s may experience a different regulation, and this regulation, together with the expression of tandem duplicated TaHSP70s, may help hexaploid wheat to adapt to heat conditions.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Triticum , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Familia de Multigenes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA