Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EJNMMI Res ; 14(1): 19, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363422

RESUMEN

BACKGROUND: Mutations in the epidermal growth factor receptor (EGFR) kinase domain are common in non-small cell lung cancer. Conventional tyrosine kinase inhibitors target the mutation site in the ATP binding pocket, thereby inhibiting the receptor's function. However, subsequent treatment resistance mutations in the ATP binding site are common. The EGFR allosteric inhibitor, EAI045, is proposed to have an alternative mechanism of action, disrupting receptor signaling independent of the ATP-binding site. The antibody cetuximab is hypothesized to increase the number of accessible allosteric pockets for EAI045, thus increasing the potency of the inhibitor. This work aimed to gain further knowledge on pharmacokinetics, the EGFR mutation-targeting potential, and the influence of cetuximab on the uptake by radiolabeling EAI045 with carbon-11 and tritium. RESULTS: 2-(5-fluoro-2-hydroxyphenyl)-2-((2-iodobenzyl)amino)-N-(thiazol-2-yl)acetamide and 2-(5-fluoro-2-hydroxyphenyl)-N-(5-iodothiazol-2-yl)-2-(1-oxoisoindolin-2-yl)acetamide were synthesized as precursors for the carbon-11 and tritium labeling of EAI045, respectively. [11C]EAI045 was synthesized using [11C]CO in a palladium-catalyzed ring closure in a 10 ± 1% radiochemical yield (decay corrected to end of [11C]CO2 production), > 97% radiochemical purity and 26 ± 1 GBq/µmol molar activity (determined at end of synthesis) in 51 min. [3H]EAI045 was synthesized by a tritium-halogen exchange in a 0.2% radiochemical yield, 98% radiochemical purity, and 763 kBq/nmol molar activity. The ability of [11C]EAI045 to differentiate between L858R/T790M mutated EGFR expressing H1975 xenografts and wild-type EGFR expressing A549 xenografts was evaluated in female nu/nu mice. The uptake was statistically significantly higher in H1975 xenografts compared to A549 xenografts (0.45 ± 0.07%ID/g vs. 0.31 ± 0.10%ID/g, P = 0.0166). The synergy in inhibition between EAI045 and cetuximab was evaluated in vivo and in vitro. While there was some indication that cetuximab influenced the uptake of [3H]EAI045 in vitro, this could not be confirmed in vivo when tumor-bearing mice were administered cetuximab (0.5 mg), 24 h prior to injection of [11C]EAI045. CONCLUSIONS: EAI045 was successfully labeled with tritium and carbon-11, and the in vivo results indicated [11C]EAI045 may be able to distinguish between mutated and non-mutated EGFR in non-small cell lung cancer mouse models. Cetuximab was hypothesized to increase EAI045 uptake; however, no significant effect was observed on the uptake of [11C]EAI045 in vivo or [3H]EAI045 in vitro in H1975 xenografts and cells.

2.
J Labelled Comp Radiopharm ; 67(6): 245-249, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38124264

RESUMEN

AZD4747 is a KRASG12C inhibitor recently shown to cross the non-human primate blood-brain barrier efficiently. In the current study, a GMP-compliant production of [11C]AZD4747 was developed to enable PET studies in human subjects. The validated procedure afforded [11C]AZD4747 as an injectable solution in good radioactivity yield (1656 ± 532 MBq), excellent radiochemical purity (100%), and a molar activity of 77 ± 13 GBq/µmol at the end of the synthesis, which took 46 ± 1 min from the end of the bombardment. Quality control on the final product was performed satisfactorily and met all acceptance criteria.


Asunto(s)
Radioisótopos de Carbono , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Radioisótopos de Carbono/química , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Radioquímica , Radiofármacos/síntesis química , Radiofármacos/farmacocinética
3.
J Med Chem ; 66(17): 12130-12140, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37647220

RESUMEN

Brigatinib, a tyrosine kinase inhibitor (TKI) with specificity for gene rearranged anaplastic lymphoma kinase (ALK), such as the EML4-ALK, has shown a potential to inhibit mutated epidermal growth factor receptor (EGFR). In this study, N-desmethyl brigatinib was successfully synthesized as a precursor in five steps. Radiolabeling with [11C]methyl iodide produced [methylpiperazine-11C]brigatinib in a 10 ± 2% radiochemical yield, 91 ± 17 GBq/µmol molar activity, and ≥95% radiochemical purity in 49 ± 4 min. [Methylpiperazine-11C]brigatinib was evaluated in non-small cell lung cancer xenografted female nu/nu mice. An hour post-injection (p.i.), 87% of the total radioactivity in plasma originated from intact [methylpiperazine-11C]brigatinib. Significant differences in tumor uptake were observed between the endogenously EML4-ALK mutated H2228 and the control xenograft A549. The tumor-to-blood ratio in H2228 xenografts could be reduced by pretreatment with ALK inhibitor crizotinib. Tracer uptake in EGFR Del19 mutated HCC827 and EML4-ALK fusion A549 was not significantly different from uptake in A549 xenografts.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Femenino , Animales , Ratones , Quinasa de Linfoma Anaplásico , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Receptores ErbB/genética , Tomografía de Emisión de Positrones
4.
Nucl Med Biol ; 120-121: 108349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37209556

RESUMEN

INTRODUCTION: Osimertinib is a third-generation tyrosine kinase inhibitor (TKI) that is able to inhibit the EGFR treatment resistance mutation T790M and primary EGFR mutations Del19 and L858R. The aim of the study was to evaluate the potential of carbon-11 labeled osimertinib to be used as a tracer for the PET imaging of tumors bearing the T790M mutation. METHODS: Osimertinib was labeled with carbon-11 at two positions, and the effect of the labeling position on the metabolism and biodistribution was studied in female nu/nu mice. The mutation status specificity of osimertinib was confirmed in vitro in a cell growth inhibition experiment, and the tumor-targeting potential of the carbon-11 isotopologues was evaluated using female nu/nu mice xenografted with NSCLC cell lines; the wild-type EGFR expressing A549, the primary Del19 EGFR mutated HCC827 and the resistance T790M/L858R mutated H1975. One of the osimertinib tracers was selected based on the results acquired and evaluated for tracer specificity and selectivity by assessment of tumor uptake in a PET study where HCC827 tumor-bearing mice were pretreated with osimertinib or afatinib. RESULTS: [Methylindole-11C]- and [dimethylamine-11C]osimertinib were synthesized by 11C-methylation of precursors AZ5104 and AZ7550, respectively. Rapid metabolism of both analogs of [11C]osimertinib was observed. Although the tumor uptake and retention of [methylindole-11C]- and [dimethylamine-11C]osimertinib in tumors were similar, the tumor-to-muscle ratios appeared to be higher for [methylindole-11C]osimertinib. The highest uptake, tumor-to-blood, and tumor-to-muscle ratio were observed in the Del19 EGFR mutated HCC827 tumors. However, the specificity and selectivity of [methylindole-11C]osimertinib PET could not be demonstrated in HCC827 tumors. The uptake of [methylindole-11C]osimertinib was not significantly higher in T790M resistance mutated H1975 xenografts compared to the negative control cell line A549. CONCLUSIONS: Osimertinib was successfully labeled at two positions with carbon-11, yielding two EGFR PET tracers, [methylindole-11C]osimertinib and [dimethylamine-11C]osimertinib. The preclinical evaluation demonstrated uptake and retention in three NSCLC xenografts; A549, HCC827, and H1975. The highest uptake was observed in the primary Del19 EGFR mutated HCC827. The ability of [methylindole-11C]osimertinib to distinguish between the T790M resistance mutated H1975 xenografts and the wild-type EGFR expressing A549 could not be confirmed in the ex vivo study.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Femenino , Animales , Ratones , Receptores ErbB/genética , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Distribución Tisular , Inhibidores de Proteínas Quinasas/farmacología , Mutación , Resistencia a Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Compuestos de Anilina/farmacología
5.
J Labelled Comp Radiopharm ; 65(10-11): 288-291, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35980801

RESUMEN

The PET tracer [18 F]F-AraG, an arabinosyl guanine analog, has shown promise for visualizing activated T cells in multiple diseases. Herein, a practitioner's protocol is described, in which the PET tracer is prepared using minimal equipment and manual actions, making it widely accessible for preclinical applications.


Asunto(s)
Tomografía de Emisión de Positrones , Linfocitos T , Guanina , Tomografía de Emisión de Positrones/métodos
6.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35455447

RESUMEN

Multiple small molecule PET tracers have been developed for the imaging of the epidermal growth factor receptor (EGFR). These tracers target the tyrosine kinase (TK) domain of the receptor and have been used for both quantifying EGFR expression and to differentiate between EGFR mutational statuses. However, the approaches for in vivo evaluation of these tracers are diverse and have resulted in data that are hard to compare. In this review, we analyze the historical development of the in vivo evaluation approaches, starting from the first EGFR TK PET tracer [11C]PD153035 to tracers developed based on TK inhibitors used for the clinical treatment of mutated EGFR expressing non-small cell lung cancer like [11C]erlotinib and [18F]afatinib. The evaluation of each tracer has been compiled to allow for a comparison between studies and ultimately between tracers. The main challenges for each group of tracers are thereafter discussed. Finally, this review addresses the challenges that need to be overcome to be able to efficiently drive EGFR PET imaging forward.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA