Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Cell Death Dis ; 15(9): 677, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285161

RESUMEN

Myeloid cells are the first line of defence against pathogens. Mitochondrial apoptosis signalling is a crucial regulator of myeloid cell lifespan and modulates the function of myeloid cells. The anti-apoptotic protein BCL-2-family protein BCL2A1/A1/BFL-1 is strongly upregulated in inflammation in macrophages. We analysed the contribution of A1 to apoptosis regulation in a conditional system of in vitro differentiation of murine macrophages from immortalised progenitors. We disabled the expression of A1 by targeting all murine A1 isoforms in the genome. Specific inhibitors were used to inactivate other anti-apoptotic proteins. Macrophage progenitor survival mainly depended on the anti-apoptotic proteins MCL-1, BCL-XL and A1 but not BCL-2. Deletion of A1 on its own had little effect on progenitor cell survival but was sensitised to cell death induction when BCL-XL or MCL-1 was neutralised. In progenitors, A1 was required for survival in the presence of the inflammatory stimulus LPS. Differentiated macrophages were resistant to inhibition of single anti-apoptotic proteins, but A1 was required to protect macrophages against inhibition of either BCL-XL or MCL-1; BCL-2 only had a minor role in these cells. Cell death by neutralisation of anti-apoptotic proteins completely depended on BAX with a small contribution of BAK only in progenitors in the presence of LPS. A1 and NOXA appeared to stabilise each other at the posttranscriptional level suggesting direct binding. Co-immunoprecipitation experiments showed the binding of A1 to NOXA and BIM. Interaction between A1 and Noxa may indirectly prevent neutralisation and destabilization of MCL-1. Our findings suggest a unique role for A1 as a modulator of survival in the macrophage lineage in concert with MCL-1 and BCL-XL, especially in a pro-inflammatory environment.


Asunto(s)
Apoptosis , Diferenciación Celular , Supervivencia Celular , Macrófagos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteínas Proto-Oncogénicas c-bcl-2 , Proteína bcl-X , Animales , Proteína bcl-X/metabolismo , Macrófagos/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Lipopolisacáridos/farmacología , Células Mieloides/metabolismo
2.
Front Cell Dev Biol ; 12: 1301892, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206090

RESUMEN

Chlamydiae are bacteria that are intriguing and important at the same time. The genus Chlamydia encompasses many species of obligate intracellular organisms: they can multiply only inside the cells of their host organism. Many, perhaps most animals have their own specifically adapted chlamydial species. In humans, the clinically most relevant species is Chlamydia trachomatis, which has particular importance as an agent of sexually transmitted disease. Pigs are the natural host of Chlamydia suis but may also carry Chlamydia abortus and Chlamydia pecorum. C. abortus and possibly C. suis have anthropozoonotic potential, which makes them interesting to human medicine, but all three species bring a substantial burden of disease to pigs. The recent availability of genomic sequence comparisons suggests adaptation of chlamydial species to their respective hosts. In cell biological terms, many aspects of all the species seem similar but non-identical: the bacteria mostly replicate within epithelial cells; they are taken up by the host cell in an endosome that they customize to generate a cytosolic vacuole; they have to evade cellular defences and have to organize nutrient transport to the vacuole; finally, they have to organize their release to be able to infect the next cell or the next host. What appears to be very difficult and challenging to achieve, is in fact a greatly successful style of parasitism. I will here attempt to cover some of the aspects of the infection biology of Chlamydia, from cell biology to immune defence, epidemiology and possibilities of prevention. I will discuss the pig as a host species and the species known to infect pigs but will in particular draw on the more detailed knowledge that we have on species that infect especially humans.

3.
J Microbiol Methods ; 224: 106988, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977080

RESUMEN

The gut microbiome is a dense and diverse community of different microorganisms that deeply influence human physiology and that have important interactions with pathogens. For the correct antibiotic treatment of infections, with its twin goals of effective inhibition of the pathogen and limitation of collateral damage to the microbiome, the identification of infectious organisms is key. Microbiological culturing is still the mainstay of pathogen identification, and anaerobic species are among the most demanding bacterial communities to culture. This study aimed to evaluate the impact of growth media on the culture of an-aerobic bacteria from human stool samples. Stool samples from eight human subjects were cultured each on a yeast extract cysteine blood agar (HCB) and a modified peptone-yeast extract-glucose (MPYG) plate and subjected to Illumina NGS analysis after DNA extraction and amplification. The results showed tight clustering of sequencing samples belonging to the same human subject. Various differences in bacterial richness and evenness could be observed between the two media, with HCB plates supporting the growth of a more diverse microbial community, and MPYG plates improving the growth rates of certain taxa. No statistical significance was observed between the groups. This study highlights the importance of choosing the appropriate growth media for anaerobic bacterial culture and adjusting culture conditions to target specific pathological conditions. HCB plates are suitable for standard microbiological diagnostics, while MPYG plates may be more appropriate for targeting specific conditions. This work emphasizes the role of next-generation sequencing in supporting future research in clinical microbiology.


Asunto(s)
Bacterias Anaerobias , Medios de Cultivo , ADN Bacteriano , Heces , Microbioma Gastrointestinal , ARN Ribosómico 16S , Humanos , Medios de Cultivo/química , ARN Ribosómico 16S/genética , Heces/microbiología , Bacterias Anaerobias/genética , Bacterias Anaerobias/aislamiento & purificación , Bacterias Anaerobias/clasificación , Bacterias Anaerobias/crecimiento & desarrollo , ADN Bacteriano/genética , ADN Ribosómico/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Biodiversidad , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo
4.
EMBO J ; 43(16): 3523-3544, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38977850

RESUMEN

Cellular senescence is a response to many stressful insults. DNA damage is a consistent feature of senescent cells, but in many cases its source remains unknown. Here, we identify the cellular endonuclease caspase-activated DNase (CAD) as a critical factor in the initiation of senescence. During apoptosis, CAD is activated by caspases and cleaves the genomic DNA of the dying cell. The CAD DNase is also activated by sub-lethal signals in the apoptotic pathway, causing DNA damage in the absence of cell death. We show that sub-lethal signals in the mitochondrial apoptotic pathway induce CAD-dependent senescence. Inducers of cellular senescence, such as oncogenic RAS, type-I interferon, and doxorubicin treatment, also depend on CAD presence for senescence induction. By directly activating CAD experimentally, we demonstrate that its activity is sufficient to induce senescence in human cells. We further investigate the contribution of CAD to senescence in vivo and find substantially reduced signs of senescence in organs of ageing CAD-deficient mice. Our results show that CAD-induced DNA damage in response to various stimuli is an essential contributor to cellular senescence.


Asunto(s)
Senescencia Celular , Daño del ADN , Humanos , Animales , Ratones , Apoptosis , Desoxirribonucleasas/metabolismo , Desoxirribonucleasas/genética , Ratones Noqueados , Doxorrubicina/farmacología
5.
Cell Death Differ ; 31(7): 924-937, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38849575

RESUMEN

Mitochondria react to infection with sub-lethal signals in the apoptosis pathway. Mitochondrial signals can be inflammatory but mechanisms are only partially understood. We show that activation of the caspase-activated DNase (CAD) mediates mitochondrial pro-inflammatory functions and substantially contributes to host defense against viral infection. In cells lacking CAD, the pro-inflammatory activity of sub-lethal signals was reduced. Experimental activation of CAD caused transient DNA-damage and a pronounced DNA damage response, involving major kinase signaling pathways, NF-κB and cGAS/STING, driving the production of interferon, cytokines/chemokines and attracting neutrophils. The transcriptional response to CAD-activation was reminiscent of the reaction to microbial infection. CAD-deficient cells had a diminished response to viral infection. Influenza virus infected CAD-deficient mice displayed reduced inflammation in lung tissue, higher viral titers and increased weight loss. Thus, CAD links the mitochondrial apoptosis system and cell death caspases to host defense. CAD-driven DNA damage is a physiological element of the inflammatory response to infection.


Asunto(s)
Daño del ADN , Inflamación , Mitocondrias , Animales , Humanos , Ratones , Apoptosis , Desoxirribonucleasas/metabolismo , Desoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/deficiencia , Inflamación/patología , Inflamación/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Nucleotidiltransferasas , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/metabolismo , Transducción de Señal
6.
Infection ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38684586

RESUMEN

PURPOSE: To analyse recent epidemiological trends of bloodstream infections (BSI) caused by Enterococcus spp. In adult patients admitted to tertiary care centres in Germany. METHODS: Epidemiological data from the multicentre R-NET study was analysed. Patients presenting with E. faecium or E. faecalis in blood cultures in six German tertiary care university hospitals between October 2016 and June 2020 were prospectively evaluated. In vancomycin-resistant enterococci (VRE), the presence of vanA/vanB was confirmed via molecular methods. RESULTS: In the 4-year study period, 3001 patients with BSI due to Enterococcus spp. were identified. E. faecium was detected in 1830 patients (61%) and E. faecalis in 1229 patients (41%). Most BSI occurred in (sub-) specialties of internal medicine. The pooled incidence density of enterococcal BSI increased significantly (4.0-4.5 cases per 10,000 patient days), which was primarily driven by VRE BSI (0.5 to 1.0 cases per 10,000 patient days). In 2020, the proportion of VRE BSI was > 12% in all study sites (range, 12.8-32.2%). Molecular detection of resistance in 363 VRE isolates showed a predominance of the vanB gene (77.1%). CONCLUSION: This large multicentre study highlights an increase of BSI due to E. faecium, which was primarily driven by VRE. The high rates of hospital- and ICU-acquired VRE BSI point towards an important role of prior antibiotic exposure and invasive procedures as risk factors. Due to limited treatment options and high mortality rates of VRE BSI, the increasing incidence of VRE BSI is of major concern.

7.
Sci Transl Med ; 16(735): eadi1501, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381845

RESUMEN

Acute graft-versus-host disease (aGVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT), for which therapeutic options are limited. Strategies to promote intestinal tissue tolerance during aGVHD may improve patient outcomes. Using single-cell RNA sequencing, we identified a lipocalin-2 (LCN2)-expressing neutrophil population in mice with intestinal aGVHD. Transfer of LCN2-overexpressing neutrophils or treatment with recombinant LCN2 reduced aGVHD severity, whereas the lack of epithelial or hematopoietic LCN2 enhanced aGVHD severity and caused microbiome alterations. Mechanistically, LCN2 induced insulin-like growth factor 1 receptor (IGF-1R) signaling in macrophages through the LCN2 receptor SLC22A17, which increased interleukin-10 (IL-10) production and reduced major histocompatibility complex class II (MHCII) expression. Transfer of LCN2-pretreated macrophages reduced aGVHD severity but did not reduce graft-versus-leukemia effects. Furthermore, LCN2 expression correlated with IL-10 expression in intestinal biopsies in multiple cohorts of patients with aGVHD, and LCN2 induced IGF-1R signaling in human macrophages. Collectively, we identified a LCN2-expressing intestinal neutrophil population that reduced aGVHD severity by decreasing MHCII expression and increasing IL-10 production in macrophages. This work provides the foundation for administration of LCN2 as a therapeutic approach for aGVHD.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Animales , Ratones , Neutrófilos/patología , Interleucina-10 , Lipocalina 2/genética , Enfermedad Injerto contra Huésped/genética , Macrófagos/patología , Enfermedad Aguda
8.
Nat Commun ; 15(1): 446, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38199985

RESUMEN

Patients with corticosteroid-refractory acute graft-versus-host disease (aGVHD) have a low one-year survival rate. Identification and validation of novel targetable kinases in patients who experience corticosteroid-refractory-aGVHD may help improve outcomes. Kinase-specific proteomics of leukocytes from patients with corticosteroid-refractory-GVHD identified rho kinase type 1 (ROCK1) as the most significantly upregulated kinase. ROCK1/2 inhibition improved survival and histological GVHD severity in mice and was synergistic with JAK1/2 inhibition, without compromising graft-versus-leukemia-effects. ROCK1/2-inhibition in macrophages or dendritic cells prior to transfer reduced GVHD severity. Mechanistically, ROCK1/2 inhibition or ROCK1 knockdown interfered with CD80, CD86, MHC-II expression and IL-6, IL-1ß, iNOS and TNF production in myeloid cells. This was accompanied by impaired T cell activation by dendritic cells and inhibition of cytoskeletal rearrangements, thereby reducing macrophage and DC migration. NF-κB signaling was reduced in myeloid cells following ROCK1/2 inhibition. In conclusion, ROCK1/2 inhibition interferes with immune activation at multiple levels and reduces acute GVHD while maintaining GVL-effects, including in corticosteroid-refractory settings.


Asunto(s)
Enfermedad Injerto contra Huésped , Quinasas Asociadas a rho , Humanos , Animales , Ratones , Quinasas Asociadas a rho/genética , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Transducción de Señal , FN-kappa B , Corticoesteroides/farmacología , Corticoesteroides/uso terapéutico
9.
J Antimicrob Chemother ; 78(9): 2274-2282, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37527398

RESUMEN

OBJECTIVES: To analyse the influence of antibiotic consumption on healthcare-associated healthcare onset (HAHO) Clostridioides difficile infection (CDI) in a German university hospital setting. METHODS: Monthly ward-level antibiotic consumption measured in DDD/100 patient days (pd) and CDI surveillance data from five university hospitals in the period 2017 through 2019 were analysed. Uni- and multivariable analyses were performed with generalized estimating equation models. RESULTS: A total of 225 wards with 7347 surveillance months and 4 036 602 pd participated. With 1184 HAHO-CDI cases, there was a median incidence density of 0.17/1000 pd (IQR 0.03-0.43) across all specialties, with substantial differences among specialties. Haematology-oncology wards showed the highest median incidence density (0.67/1000 pd, IQR 0.44-1.01), followed by medical ICUs (0.45/1000 pd, IQR 0.27-0.73) and medical general wards (0.32/1000 pd, IQR 0.18-0.53). Multivariable analysis revealed carbapenem (mostly meropenem) consumption to be the only antibiotic class associated with increased HAHO-CDI incidence density. Each carbapenem DDD/100 pd administered increased the HAHO-CDI incidence density by 1.3% [incidence rate ratio (IRR) 1.013; 95% CI 1.006-1.019]. Specialty-specific analyses showed this influence only to be valid for haematological-oncological wards. Overall, factors like ward specialty (e.g. haematology-oncology ward IRR 2.961, 95% CI 2.203-3.980) or other CDI cases on ward had a stronger influence on HAHO-CDI incidence density (e.g. community-associated CDI or unknown association case in same month IRR 1.476, 95% CI 1.242-1.755) than antibiotic consumption. CONCLUSIONS: In the German university hospital setting, monthly ward-level carbapenem consumption seems to increase the HAHO-CDI incidence density predominantly on haematological-oncological wards. Furthermore, other patient-specific factors seem to be equally important to control HAHO-CDI.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Infección Hospitalaria , Humanos , Antibacterianos/uso terapéutico , Hospitales Universitarios , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/epidemiología , Carbapenémicos , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/epidemiología , Incidencia , Estudios Retrospectivos
10.
Clin Microbiol Infect ; 29(9): 1197.e9-1197.e15, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37277092

RESUMEN

OBJECTIVES: Staphylococcus aureus bloodstream infection (SAB) is a common and severe infection. This study aims to describe temporal trends in numbers, epidemiological characteristics, clinical manifestations, and outcomes of SAB. METHODS: We performed a post-hoc analysis of three prospective SAB cohorts at the University Medical Centre Freiburg between 2006 and 2019. We validated our findings in a large German multi-centre cohort of five tertiary care centres (R-Net consortium, 2017-2019). Time-dependent trends were estimated using Poisson or beta regression models. RESULTS: We included 1797 patients in the mono-centric and 2336 patients in the multi-centric analysis. Overall, we observed an increasing number of SAB cases over 14 years (6.4%/year and 1000 patient days, 95% CI: 5.1% to 7.7%), paralleled by an increase in the proportion of community-acquired SAB (4.9%/year [95% CI: 2.1% to 7.8%]) and a decrease in the rate of methicillin-resistant-SAB (-8.5%/year [95% CI: -11.2% to -5.6%]). All of these findings were confirmed in the multi-centre validation cohort (6.2% cases per 1000 patient cases/year [95% CI: -0.6% to 12.6%], community-acquired-SAB 8.7% [95% CI: -1.2% to 19.6%], methicillin-resistant S. aureus-SAB -18.6% [95% CI: -30.6 to -5.8%]). Moreover, we found an increasing proportion of patients with multiple risk factors for complicated/difficult-to-treat SAB (8.5%/year, 95% CI: 3.6% to 13.5%, p < 0.001), alongside an overall higher level of comorbidities (Charlson comorbidity score 0.23 points/year, 95% CI: 0.09 to 0.37, p 0.005). At the same time, the rate of deep-seated foci such as osteomyelitis or deep-seated abscesses significantly increased (6.7%, 95% CI: 3.9% to 9.6%, p < 0.001). A reduction of in-hospital mortality by 0.6% per year (95% CI: 0.08% to 1%) was observed in the subgroup of patients with infectious diseases consultations. DISCUSSION: We found an increasing number of SAB combined with a significant increase in comorbidities and complicating factors in tertiary care centres. The resulting challenges in securing adequate SAB management in the face of high patient turnover will become an important task for physicians.


Asunto(s)
Bacteriemia , Infecciones Comunitarias Adquiridas , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Centros de Atención Terciaria , Bacteriemia/microbiología , Infecciones Estafilocócicas/microbiología , Infecciones Comunitarias Adquiridas/microbiología , Antibacterianos/uso terapéutico
12.
Infection ; 51(4): 805-811, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37129842

RESUMEN

The SARS-CoV-2 pandemic has highlighted the importance of viable infection surveillance and the relevant infrastructure. From a German perspective, an integral part of this infrastructure, genomic pathogen sequencing, was at best fragmentary and stretched to its limits due to the lack or inefficient use of equipment, human resources, data management and coordination. The experience in other countries has shown that the rate of sequenced positive samples and linkage of genomic and epidemiological data (person, place, time) represent important factors for a successful application of genomic pathogen surveillance. Planning, establishing and consistently supporting adequate structures for genomic pathogen surveillance will be crucial to identify and combat future pandemics as well as other challenges in infectious diseases such as multi-drug resistant bacteria and healthcare-associated infections. Therefore, the authors propose a multifaceted and coordinated process for the definition of procedural, legal and technical standards for comprehensive genomic pathogen surveillance in Germany, covering the areas of genomic sequencing, data collection and data linkage, as well as target pathogens. A comparative analysis of the structures established in Germany and in other countries is applied. This proposal aims to better tackle epi- and pandemics to come and take action from the "lessons learned" from the SARS-CoV-2 pandemic.


Asunto(s)
COVID-19 , Infección Hospitalaria , Humanos , Pandemias/prevención & control , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2/genética , Genómica
13.
Int Rev Cell Mol Biol ; 374: 83-127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36858657

RESUMEN

Beyond the initial 'powerhouse' view, mitochondria have numerous functions in their mammalian cell and contribute to many physiological processes, and many of these we understand only partially. The control of apoptosis by mitochondria is firmly established. Many questions remain however how this function is embedded into physiology, and how other signaling pathways regulate mitochondrial apoptosis; the interplay of bacteria with the mitochondrial apoptosis pathway is one such example. The outer mitochondrial membrane regulates both import into mitochondria and the release of intermembrane, and in some situations also matrix components from mitochondria, and these mitochondrial components can have signaling function in the cytosol. One function is the induction of apoptotic cell death. An exciting, more recently discovered function is the regulation of inflammation. Mitochondrial molecules, both proteins and nucleic acids, have inflammatory activity when released from mitochondria, an activity whose regulation is intertwined with the activation of apoptotic caspases. Bacterial infection can have more general effects on mitochondrial apoptosis-regulation, through effects on host transcription and other pathways, such as signals controlled by pattern recognition. Some specialized bacteria have products that more specifically regulate signaling to the outer mitochondrial membrane, and to apoptosis; both pro- and anti-apoptotic mechanisms have been reported. Among the intriguing recent findings in this area are signaling contributions of porins and the sub-lethal release of intermembrane constituents. We will here review the literature and place the new developments into the established context of mitochondrial signaling during the contact of bacterial pathogens with human cells.


Asunto(s)
Infecciones Bacterianas , Humanos , Animales , Apoptosis , Transporte Biológico , Mitocondrias , Membranas Mitocondriales , Mamíferos
14.
Artículo en Alemán | MEDLINE | ID: mdl-36811648

RESUMEN

The SARS-CoV­2 pandemic has shown a deficit of essential epidemiological infrastructure, especially with regard to genomic pathogen surveillance in Germany. In order to prepare for future pandemics, the authors consider it urgently necessary to remedy this existing deficit by establishing an efficient infrastructure for genomic pathogen surveillance. Such a network can build on structures, processes, and interactions that have already been initiated regionally and further optimize them. It will be able to respond to current and future challenges with a high degree of adaptability.The aim of this paper is to address the urgency and to outline proposed measures for establishing an efficient, adaptable, and responsive genomic pathogen surveillance network, taking into account external framework conditions and internal standards. The proposed measures are based on global and country-specific best practices and strategy papers. Specific next steps to achieve an integrated genomic pathogen surveillance include linking epidemiological data with pathogen genomic data; sharing and coordinating existing resources; making surveillance data available to relevant decision-makers, the public health service, and the scientific community; and engaging all stakeholders. The establishment of a genomic pathogen surveillance network is essential for the continuous, stable, active surveillance of the infection situation in Germany, both during pandemic phases and beyond.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , Alemania/epidemiología , Genómica
15.
Nat Commun ; 14(1): 140, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627272

RESUMEN

Species within the Enterobacter cloacae complex (ECC) include globally important nosocomial pathogens. A three-year study of ECC in Germany identified Enterobacter xiangfangensis as the most common species (65.5%) detected, a result replicated by examining a global pool of 3246 isolates. Antibiotic resistance profiling revealed widespread resistance and heteroresistance to the antibiotic colistin and detected the mobile colistin resistance (mcr)-9 gene in 19.2% of all isolates. We show that resistance and heteroresistance properties depend on the chromosomal arnBCADTEF gene cassette whose products catalyze transfer of L-Ara4N to lipid A. Using comparative genomics, mutational analysis, and quantitative lipid A profiling we demonstrate that intrinsic lipid A modification levels are genospecies-dependent and governed by allelic variations in phoPQ and mgrB, that encode a two-component sensor-activator system and specific inhibitor peptide. By generating phoPQ chimeras and combining them with mgrB alleles, we show that interactions at the pH-sensing interface of the sensory histidine kinase phoQ dictate arnBCADTEF expression levels. To minimize therapeutic failures, we developed an assay that accurately detects colistin resistance levels for any ECC isolate.


Asunto(s)
Colistina , Lípido A , Colistina/farmacología , Colistina/uso terapéutico , Lípido A/química , Lípido A/farmacología , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Enterobacter/genética , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana
17.
Cell Death Differ ; 30(2): 250-257, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36131076

RESUMEN

One of the tasks of mitochondria is the rule over life and death: when the outer membrane is permeabilized, the release of intermembrane space proteins causes cell death by apoptosis. For a long time, this mitochondrial outer membrane permeabilization (MOMP) has been accepted as the famous step from which no cell returns. Recent results have however shown that this quite plainly does not have to be the case. A cell can also undergo only a little MOMP, and it can efficiently repair damage it has incurred in the process. There is no doubt now that such low-scale permeabilization occurs. A major unclarified issue is the biological relevance. Is small-scale mitochondrial permeabilization an accident, a leakiness of the apoptosis apparatus, perhaps during restructuring of the mitochondrial network? Is it attempted suicide, where cell death by apoptosis is the real goal but the stimulus failed to reach the threshold? Or, more boldly, is there a true biological meaning behind the event of the release of low amounts of mitochondrial components? We will here explore this last possibility, which we believe is on one hand appealing, on the other hand plausible and supported by some evidence. Recent data are consistent with the view that sub-lethal signals in the mitochondrial apoptosis pathway can drive inflammation, the first step of an immune reaction. The apoptosis apparatus is almost notoriously easy to trigger. Sub-lethal signals may be even easier to set off. We suggest that the apoptosis apparatus is used in this way to sound the call when the first human cell is infected by a pathogen.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Humanos , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Apoptosis/fisiología , Proteínas/metabolismo , Transducción de Señal
18.
Clin Microbiol Infect ; 29(4): 515-522, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36481293

RESUMEN

OBJECTIVES: Assessment of vancomycin-resistant Enterococcus faecium (VREfm) prevalence upon hospital admission and analysis of risk factors for colonization. METHODS: From 2014 to 2018, patients were recruited within 72 hours of admission to seven participating German university hospitals, screened for VREfm and questioned for potential risk factors (prior multidrug-resistant organism detection, current/prior antibiotic consumption, prior hospital, rehabilitation or long-term care facility stay, international travel, animal contact and proton pump inhibitor [PPI]/antacid therapy). Genotype analysis was done using cgMLST typing. Multivariable analysis was performed. RESULTS: In 5 years, 265 of 17,349 included patients were colonized with VREfm (a prevalence of 1.5%). Risk factors for VREfm colonization were age (adjusted OR [aOR], 1.02; 95% CI, 1.01-1.03), previous (aOR, 2.71; 95% CI, 1.87-3.92) or current (aOR, 2.91; 95% CI, 2.60-3.24) antibiotic treatment, prior multidrug-resistant organism detection (aOR, 2.83; 95% CI, 2.21-3.63), prior stay in a long-term care facility (aOR, 2.19; 95% CI, 1.62-2.97), prior stay in a hospital (aOR, 2.91; 95% CI, 2.05-4.13) and prior consumption of PPI/antacids (aOR, 1.29; 95% CI, 1.18-1.41). Overall, the VREfm admission prevalence increased by 33% each year and 2% each year of life. 250 of 265 isolates were genotyped and 141 (53.2%) of the VREfm were the emerging ST117. Multivariable analysis showed that ST117 and non-ST117 VREfm colonized patients differed with respect to admission year and prior multidrug-resistant organism detection. DISCUSSION: Age, healthcare contacts and antibiotic and PPI/antacid consumption increase the individual risk of VREfm colonization. The VREfm admission prevalence increase in Germany is mainly driven by the emergence of ST117.


Asunto(s)
Infección Hospitalaria , Enterococcus faecium , Infecciones por Bacterias Grampositivas , Enterococos Resistentes a la Vancomicina , Animales , Vancomicina/farmacología , Hospitales Universitarios , Estudios Transversales , Prevalencia , Antiácidos , Antibacterianos/farmacología , Factores de Riesgo , Infecciones por Bacterias Grampositivas/epidemiología , Infecciones por Bacterias Grampositivas/microbiología , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiología
19.
Front Cell Infect Microbiol ; 13: 1275405, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38287975

RESUMEN

Introduction: Alterations of the gut microbiome are involved in the pathogenesis of Crohn's disease (CD). The role of fungi in this context is unclear. This study aimed to determine postoperative changes in the bacterial and fungal gut communities of CD patients undergoing intestinal resection, and to evaluate interactions between the bacteriome and mycobiome and their impact on the patients' outcome. Methods: We report a subgroup analysis of a prospective cohort study, focusing on 10 CD patients whose fecal samples were collected for bacterial 16S rRNA and fungal ITS2 genes next-generation sequencing the day before surgery and on the 5th or 6th postoperative day. Results: No significant differences in bacterial and fungal diversity were observed between preoperative and postoperative stool samples. By in-depth analysis, significant postoperative abundance changes of bacteria and fungi and 17 interkingdom correlations were detected. Network analysis identified 13 microbial clusters in the perioperative gut communities, revealing symbiotic and competitive interactions. Relevant factors were gender, age, BMI, lifestyle habits (smoking, alcohol consumption) and surgical technique. Postoperative abundance changes and identified clusters were associated with clinical outcomes (length of hospital stay, complications) and levels of inflammatory markers. Conclusions: Our findings highlight the importance of dissecting the interactions of gut bacterial and fungal communities in CD patients and their potential influence on postoperative and disease outcomes.


Asunto(s)
Enfermedad de Crohn , Procedimientos Quirúrgicos del Sistema Digestivo , Micobioma , Humanos , Enfermedad de Crohn/cirugía , ARN Ribosómico 16S/genética , Estudios Prospectivos , Bacterias/genética , Hongos/genética
20.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA