Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Innovation (Camb) ; 2(4): 100161, 2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34766097

RESUMEN

Defect engineering is a promising strategy for supported catalysts to improve the catalytic activity and durability. Here, we selected the carbon (C) matrix enriched with topological defects to serve as the substrate material, in which the topological defects can act as anchoring centers to trap Pt nanoparticles for driving the O2 reduction reactions (ORRs). Both experimental characterizations and theoretical simulations revealed the strong Pt-defect interaction with enhanced charge transfer on the interface. Despite a low Pt loading, the supported catalyst can still achieve a remarkable 55 mV positive shift of half-wave potential toward ORR in O2-saturated 0.1 M HClO4 electrolyte compared with the commercial Pt catalyst on graphitized C. Moreover, the degeneration after 5,000 voltage cycles was negligible. This finding indicates that the presence of strong interaction between Pt and topological C defects can not only stabilize Pt nanoparticles but also optimize the electronic structures of Pt/C catalysts toward ORR.

2.
Adv Mater ; 32(28): e2001300, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32490580

RESUMEN

Topological defects, with an asymmetric local electronic redistribution, are expected to locally tune the intrinsic catalytic activity of carbon materials. However, it is still challenging to deliberately create high-density homogeneous topological defects in carbon networks due to the high formation energy. Toward this end, an efficient NH3 thermal-treatment strategy is presented for thoroughly removing pyrrolic-N and pyridinic-N dopants from N-enriched porous carbon particles, to create high-density topological defects. The resultant topological defects are systematically investigated by near-edge X-ray absorption fine structure measurements and local density of states analysis, and the defect formation mechanism is revealed by reactive molecular dynamics simulations. Notably, the as-prepared porous carbon materials possess an enhanced electrocatalytic CO2 reduction performance, yielding a current density of 2.84 mA cm-2 with Faradaic efficiency of 95.2% for CO generation. Such a result is among the best performances reported for metal-free CO2 reduction electrocatalysts. Density functional theory calculations suggest that the edge pentagonal sites are the dominating active centers with the lowest free energy (ΔG) for CO2 reduction. This work not only presents deep insights for the defect engineering of carbon-based materials but also improves the understanding of electrocatalytic CO2 reduction on carbon defects.

3.
Nanoscale ; 12(18): 9924-9934, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32364205

RESUMEN

The oxygen evolution reaction (OER) is considered as a major bottleneck of water splitting for hydrogen generation. It is highly desired to develop high performance OER catalysts in near-neutral operating environments because of mild corrosion and pollution. This review summarized the recent development of heterogeneous catalysts containing transition metals (TM) for the OER at near-neutral pH. Specifically, we focus on some effective strategies to achieve a high OER performance for TM (e.g., Co, Mn, Ni, Cu, Fe, and binary TM)-based catalysts in near-neutral media. The progress and perspectives are discussed, which might provide some insights into the rapid promotion of the electrocatalytic performance for future applications in hydrogen production.

4.
ChemSusChem ; 13(3): 629-639, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31886627

RESUMEN

Electrocatalytic hydrogenation (ECH) of guaiacol was performed in a stirred slurry electrochemical reactor (SSER) using 5 wt % Pt/C catalyst in the cathode compartment. Different pairs of acid (H2 SO4 ), neutral (NaCl), and alkaline (NaOH) catholyte-anolyte combinations separated by a Nafion® 117 cation exchange membrane, were investigated by galvanostatic and potentiostatic electrolysis to probe the electrolyte and proton concentration effect on guaiacol conversion, product distribution, and Faradaic efficiency. The acid-acid and neutral-acid pairs were found to be the most effective. In the case of the neutral-acid pair, proton diffusion and migration through the membrane from the anolyte to the catholyte supplies the protons required for ECH. Typically, the two major hydrogenation products were cyclohexanol and 2-methoxycyclohexanol. However, ECH at constant cathode superficial current density (-182 mA cm-2 ) and higher temperature (i.e., 60 °C) favored a pathway leading mainly to cyclohexanone. The guaiacol conversion routes were affected by temperature- and cathode potential-dependent surface coverage of adsorbed hydrogen radicals generated through electroreduction of protons.

5.
Commun Chem ; 3(1): 155, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36703433

RESUMEN

The electroreduction of CO2 is one of the most investigated reactions and involves testing a large number and variety of catalysts. The majority of experimental electrocatalysis studies use conventional one-sample-at-a-time methods without providing spatially resolved catalytic activity information. Herein, we present the application of scanning electrochemical microscopy (SECM) for simultaneous screening of different catalysts forming an array. We demonstrate the potential of this method for electrocatalytic assessment of an array consisting of three Sn/SnOx catalysts for CO2 reduction to formate (CO2RF). Simultaneous SECM scans with fast scan (1 V s-1) cyclic voltammetry detection of products (HCOO-, CO and H2) at the Pt ultramicroelectrode tip were performed. We were able to consistently distinguish the electrocatalytic activities of the three compositionally and morphologically different Sn/SnOx catalysts. Further development of this technique for larger catalyst arrays and matrices coupled with machine learning based algorithms could greatly accelerate the CO2 electroreduction catalyst discovery.

6.
ACS Appl Mater Interfaces ; 9(32): 26771-26785, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28718625

RESUMEN

High-performance, nonprecious metal bifunctional electrocatalysts for the oxygen reduction and evolution reactions (ORR and OER, respectively) are of great importance for rechargeable metal-air batteries and regenerative fuel cells. A comprehensive study based on statistical design of experiments is presented to investigate and optimize the surfactant-assisted structure and the resultant bifunctional ORR/OER activity of anodically deposited manganese oxide (MnOx) catalysts. Three classes of surfactants are studied: anionic (sodium dodecyl sulfate, SDS), non-ionic (t-octylphenoxypolyethoxyethanol, Triton X-100), and cationic (cetyltrimethylammonium bromide, CTAB). The adsorption of surfactants has two main effects: increased deposition current density due to higher Mn2+ and Mn3+ concentrations at the outer Helmholtz plane (Frumkin effect on the electrodeposition kinetics) and templating of the MnOx nanostructure. CTAB produces MnOx with nanoneedle (1D) morphology, whereas nanospherical- and nanopetal-like morphologies are obtained with SDS and Triton, respectively. The bifunctional performance is assessed based on three criteria: OER/ORR onset potential window (defined at 2 and -2 mA cm-2) and separately the ORR and OER mass activities. The best compromise among these three criteria is obtained either with Triton X-100 deposited catalyst composed of MnOOH and Mn3O4 or SDS deposited catalyst containing a combination of α- and ß-MnO2, MnOOH, and Mn3O4.The interaction effects among the deposition variables (surfactant type and concentration, anode potential, Mn2+ concentration, and temperature) reveal the optimal strategy for high-activity bifunctional MnOx catalyst synthesis. Mass activities for OER and ORR up to 49 A g-1 (at 1556 mVRHE) and -1.36 A g-1 (at 656 mVRHE) are obtained, respectively.

7.
ChemSusChem ; 10(17): 3512-3519, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28664681

RESUMEN

Bimetallic Sn-Pb catalysts with five different Sn/Pb atomic ratios were electrodeposited on Teflonated carbon paper and non-Teflonated carbon cloth using both fluoroborate- and oxide-containing deposition media to produce catalysts for the electrochemical reduction of CO2 (ERC) to formate (HCOO- ). The interaction between catalyst composition, morphology, substrate, and deposition media was investigated by using cyclic voltammetry and constant potential electrolysis at -2.0 V versus Ag/AgCl for 2 h in 0.5 m KHCO3 . The catalysts were analyzed before and after electrolysis by using SEM and XRD to determine the mechanisms of Faradaic efficiency loss and degradation. Catalysts that are mainly Sn with 15-35 at % Pb generated Faradaic efficiencies up to 95 % with a stable performance. However, pure Sn catalysts showed high initial stage formate production rates but experienced an extensive (up to 30 %) decrease of the Faradaic efficiency. The XRD results demonstrated the presence of polycrystalline SnO2 after electrolysis using Sn-Pb catalysts with 35 at % Pb and its absence in the case of pure Sn. It is proposed that the presence of Pb (15-35 at %) in mainly Sn catalysts stabilized SnO2 , which is responsible for the enhanced Faradaic efficiency and catalytic durability in the ERC.


Asunto(s)
Dióxido de Carbono/química , Galvanoplastia , Formiatos/química , Plomo/química , Estaño/química , Catálisis , Electroquímica , Fluorocarburos/química , Oxidación-Reducción , Plata/química , Compuestos de Plata/química
8.
ChemSusChem ; 9(13): 1689-97, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27254459

RESUMEN

The microporous layer (MPL) is a key cathodic component in proton exchange membrane fuel cells owing to its beneficial influence on two-phase mass transfer. However, its performance is highly dependent on material properties such as morphology, porous structure, and electrical resistance. To improve water management and performance, electrochemically exfoliated graphene (EGN) microsheets are considered as an alternative to the conventional carbon black (CB) MPLs. The EGN-based MPLs decrease the kinetic overpotential and the Ohmic potential loss, whereas the addition of CB to form a composite EGN+CB MPL improves the mass-transport limiting current density drastically. This is reflected by increases of approximately 30 and 70 % in peak power densities at 100 % relative humidity (RH) compared with those for CB- and EGN-only MPLs, respectively. The composite EGN+CB MPL also retains the superior performance at a cathode RH of 20 %, whereas the CB MPL shows significant performance loss.


Asunto(s)
Suministros de Energía Eléctrica , Grafito/química , Electroquímica , Electrodos , Óxidos/química , Porosidad
9.
ChemSusChem ; 6(5): 847-55, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23589385

RESUMEN

Eliminating the expensive and failure-prone proton exchange membrane (PEM) together with the platinum-based anode and cathode catalysts would significantly reduce the high capital and operating costs of low-temperature (<373 K) fuel cells. We recently introduced the Swiss-roll mixed-reactant fuel cell (SR-MRFC) concept for borohydride-oxygen alkaline fuel cells. We now present advances in anode electrocatalysis for borohydride electrooxidation through the development of osmium nanoparticulate catalysts supported on porous monolithic carbon fiber materials (referred to as an osmium 3D anode). The borohydride-oxygen SR-MRFC operates at 323 K and near atmospheric pressure, generating a peak power density of 1880 W m(-2) in a single-cell configuration by using an osmium-based anode (with an osmium loading of 0.32 mg cm(-2)) and a manganese dioxide gas-diffusion cathode. To the best of our knowledge, 1880 W m(-2) is the highest power density ever reported for a mixed-reactant fuel cell operating under similar conditions. Furthermore, the performance matches the highest reported power densities for conventional dual chamber PEM direct borohydride fuel cells.


Asunto(s)
Borohidruros/química , Carbono/química , Suministros de Energía Eléctrica , Compuestos de Manganeso/química , Nanopartículas del Metal/química , Osmio/química , Óxidos/química , Catálisis , Electrodos , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Ácido Nítrico/química , Oxígeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA