Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 37(23): 5690-5698, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28483978

RESUMEN

FGF signaling, an important component of intercellular communication, is required in many tissues throughout development to promote diverse cellular processes. Whether FGF receptors (FGFRs) accomplish such varied tasks in part by activating different intracellular transducers in different contexts remains unclear. Here, we used the developing mouse telencephalon as an example to study the role of the FRS adapters FRS2 and FRS3 in mediating the functions of FGFRs. Using tissue-specific and germline mutants, we examined the requirement of Frs genes in two FGFR-dependent processes. We found that Frs2 and Frs3 are together required for the differentiation of a subset of medial ganglionic eminence (MGE)-derived neurons, but are dispensable for the survival of early telencephalic precursor cells, in which any one of three FGFRs (FGFR1, FGFR2, or FGFR3) is sufficient for survival. Although FRS adapters are dispensable for ERK-1/2 activation, they are required for AKT activation within the subventricular zone of the developing MGE. Using an FRS2,3-binding site mutant of Fgfr1, we established that FRS adapters are necessary for mediating most or all FGFR1 signaling, not only in MGE differentiation, but also in cell survival, implying that other adapters mediate at least in part the signaling from FGFR2 and FGFR3. Our study provides an example of a contextual role for an intracellular transducer and contributes to our understanding of how FGF signaling plays diverse developmental roles.SIGNIFICANCE STATEMENT FGFs promote a range of developmental processes in many developing tissues and at multiple developmental stages. The mechanisms underlying this multifunctionality remain poorly defined in vivo Using telencephalon development as an example, we show here that FRS adapters exhibit some selectivity in their requirement for mediating FGF receptor (FGFR) signaling and activating downstream mediators that depend on the developmental process, with a requirement in neuronal differentiation but not cell survival. Differential engagement of FRS and non-FRS intracellular adapters downstream of FGFRs could therefore in principle explain how FGFs play several distinct roles in other developing tissues and developmental stages.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Células-Madre Neurales/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Telencéfalo/embriología , Telencéfalo/metabolismo , Animales , Supervivencia Celular/fisiología , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología , Telencéfalo/citología
2.
Development ; 136(14): 2457-65, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19542358

RESUMEN

The FGF family of extracellular signaling factors has been proposed to play multiple roles in patterning the telencephalon, the precursor to the cerebrum. In this study, unlike previous ones, we effectively abolish FGF signaling in the anterior neural plate via deletion of three FGF receptor (FGFR) genes. Triple FGFR mutant mice exhibit a complete loss of the telencephalon, except the dorsal midline. Disruption of FGF signaling prior to and coincident with telencephalic induction reveals that FGFs promote telencephalic character and are strictly required to keep telencephalic cells alive. Moreover, progressively more severe truncations of the telencephalon are observed in FGFR single, double and triple mutants. Together with previous gain-of-function studies showing induction of Foxg1 expression and mirror-image duplications of the cortex by exogenous FGF8, our loss-of-function results suggest that, rather than independently patterning different areas, FGF ligands and receptors act in concert to mediate organizer activity for the whole telencephalon.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Telencéfalo/embriología , Telencéfalo/metabolismo , Animales , Tipificación del Cuerpo , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Ratones , Ratones Noqueados , Ratones Mutantes , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Placa Neural/citología , Placa Neural/embriología , Placa Neural/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Embarazo , Receptores de Factores de Crecimiento de Fibroblastos/deficiencia , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Telencéfalo/citología
3.
Development ; 134(21): 3789-94, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17913790

RESUMEN

Holoprosencephaly (HPE) is a devastating forebrain abnormality with a range of morphological defects characterized by loss of midline tissue. In the telencephalon, the embryonic precursor of the cerebral hemispheres, specialized cell types form a midline that separates the hemispheres. In the present study, deletion of the BMP receptor genes, Bmpr1b and Bmpr1a, in the mouse telencephalon results in a loss of all dorsal midline cell types without affecting the specification of cortical and ventral precursors. In the holoprosencephalic Shh(-/-) mutant, by contrast, ventral patterning is disrupted, whereas the dorsal midline initially forms. This suggests that two separate developmental mechanisms can underlie the ontogeny of HPE. The Bmpr1a;Bmpr1b mutant provides a model for a subclass of HPE in humans: midline inter-hemispheric HPE.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Holoprosencefalia/metabolismo , Mutación/genética , Transducción de Señal , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/deficiencia , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Morfogenéticas Óseas/genética , Encéfalo/embriología , Encéfalo/metabolismo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Holoprosencefalia/embriología , Holoprosencefalia/genética , Masculino , Ratones , Ratones Transgénicos , Fenotipo
4.
Development ; 133(15): 2937-46, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16818446

RESUMEN

Sonic hedgehog (SHH) is required to generate ventral cell types throughout the central nervous system. Its role in directly specifying ventral cells, however, has recently been questioned because loss of the Shh gene has little effect on ventral development if the Gli3 gene is also mutant. Consequently, another ventral determinant must exist. Here, genetic evidence establishes that FGFs are required for ventral telencephalon development. First, simultaneous deletion of Fgfr1 and Fgfr3 specifically in the telencephalon results in the loss of differentiated ventromedial cells; and second, in the Fgfr1;Fgfr2 double mutant, ventral precursor cells are lost, mimicking the phenotype obtained previously with a loss of SHH signalling. Yet, in the Fgfr1;Fgfr2 mutant, Shh remains expressed, as does Gli1, the transcription of which depends on SHH activity, suggesting that FGF signalling acts independently of SHH to generate ventral precursors. Moreover, the Fgfr1;Fgfr2 phenotype, unlike the Shh phenotype, is not rescued by loss of Gli3, further indicating that FGFs act downstream of Shh and Gli3 to generate ventral telencephalic cell types.


Asunto(s)
Factores de Crecimiento de Fibroblastos/fisiología , Telencéfalo/embriología , Transactivadores/fisiología , Animales , Tipificación del Cuerpo , Femenino , Proteínas Hedgehog , Ratones , Ratones Noqueados , Embarazo , Receptores de Factores de Crecimiento de Fibroblastos/deficiencia , Receptores de Factores de Crecimiento de Fibroblastos/genética , Transducción de Señal
5.
Dev Biol ; 289(1): 141-51, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16309667

RESUMEN

The adult cerebral hemispheres are connected to each other by specialized midline cell types and by three axonal tracts: the corpus callosum, the hippocampal commissure, and the anterior commissure. Many steps are required for these tracts to form, including early patterning and later axon pathfinding steps. Here, the requirement for FGF signaling in forming midline cell types and commissural axon tracts of the cerebral hemispheres is examined. Fgfr1, but not Fgfr3, is found to be essential for establishing all three commissural tracts. In an Fgfr1 mutant, commissural neurons are present and initially project their axons, but these fail to cross the midline that separates the hemispheres. Moreover, midline patterning defects are observed in the mutant. These defects include the loss of the septum and three specialized glial cell types, the indusium griseum glia, midline zipper glia, and glial wedge. Our findings demonstrate that FGF signaling is required for generating telencephalic midline structures, in particular septal and glial cell types and all three cerebral commissures. In addition, analysis of the Fgfr1 heterozygous mutant, in which midline patterning is normal but commissural defects still occur, suggests that at least two distinct FGF-dependent mechanisms underlie the formation of the cerebral commissures.


Asunto(s)
Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/deficiencia , Núcleos Septales/embriología , Telencéfalo/embriología , Animales , Axones/fisiología , Factor 8 de Crecimiento de Fibroblastos/análisis , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Heterocigoto , Ratones , Ratones Mutantes , Mutación , Neuroglía/citología , Neuronas/citología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/análisis , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Núcleos Septales/anomalías , Núcleos Septales/química , Transducción de Señal , Telencéfalo/anomalías , Telencéfalo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA