Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Asia Pac J Ophthalmol (Phila) ; 13(4): 100082, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39019261

RESUMEN

The integration of artificial intelligence (AI) with healthcare has opened new avenues for diagnosing, treating, and managing medical conditions with remarkable precision. Uveitis, a diverse group of rare eye conditions characterized by inflammation of the uveal tract, exemplifies the complexities in ophthalmology due to its varied causes, clinical presentations, and responses to treatments. Uveitis, if not managed promptly and effectively, can lead to significant visual impairment. However, its management requires specialized knowledge, which is often lacking, particularly in regions with limited access to health services. AI's capabilities in pattern recognition, data analysis, and predictive modelling offer significant potential to revolutionize uveitis management. AI can classify disease etiologies, analyze multimodal imaging data, predict outcomes, and identify new therapeutic targets. However, transforming these AI models into clinical applications and meeting patient expectations involves overcoming challenges like acquiring extensive, annotated datasets, ensuring algorithmic transparency, and validating these models in real-world settings. This review delves into the complexities of uveitis and the current AI landscape, discussing the development, opportunities, and challenges of AI from theoretical models to bedside application. It also examines the epidemiology of uveitis, the global shortage of uveitis specialists, and the disease's socioeconomic impacts, underlining the critical need for AI-driven approaches. Furthermore, it explores the integration of AI in diagnostic imaging and future directions in ophthalmology, aiming to highlight emerging trends that could transform management of a patient with uveitis and suggesting collaborative efforts to enhance AI applications in clinical practice.


Asunto(s)
Inteligencia Artificial , Uveítis , Humanos , Inteligencia Artificial/tendencias , Uveítis/diagnóstico , Manejo de la Enfermedad
2.
Asia Pac J Ophthalmol (Phila) ; 13(4): 100084, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39059557

RESUMEN

Natural Language Processing (NLP) is a subfield of artificial intelligence that focuses on the interaction between computers and human language, enabling computers to understand, generate, and derive meaning from human language. NLP's potential applications in the medical field are extensive and vary from extracting data from Electronic Health Records -one of its most well-known and frequently exploited uses- to investigating relationships among genetics, biomarkers, drugs, and diseases for the proposal of new medications. NLP can be useful for clinical decision support, patient monitoring, or medical image analysis. Despite its vast potential, the real-world application of NLP is still limited due to various challenges and constraints, meaning that its evolution predominantly continues within the research domain. However, with the increasingly widespread use of NLP, particularly with the availability of large language models, such as ChatGPT, it is crucial for medical professionals to be aware of the status, uses, and limitations of these technologies.


Asunto(s)
Procesamiento de Lenguaje Natural , Oftalmología , Humanos , Registros Electrónicos de Salud , Inteligencia Artificial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA