Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Intervalo de año de publicación
1.
Gels ; 10(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38786231

RESUMEN

Food gels are viscoelastic substances used in various gelled products manufactured around the world. Polysaccharides are the most common food gelling agents. The aim of this work was the production and characterization of a gel produced in a blue corn flour fermentation process, where different proportions were used of blue corn (Zea mays L.) flour and Czapek Dox culture medium (90 mL of culture medium with 10 g of blue corn flour, 80 mL of culture medium with 20 g of blue corn flour, and 70 mL of culture medium with 30 g of blue corn flour) and were fermented for three different durations (20, 25, and 30 days) with the Colletotrichum gloeosporioides fungus. A characterization of the gel was carried out studying the rheological properties, proximal analysis, toxicological analysis, microscopic structure, and molecular characterization, in addition to a solubility test with three different organic solvents (ethanol, hexane, and ethyl acetate, in addition to water). The results obtained showed in the rheological analysis that the gel could have resistance to high temperatures and a reversible behavior. The gel is soluble in polar solvents (ethanol and water). The main chemical components of the gel are carbohydrates, especially polysaccharides, and it was confirmed by FT-IR spectroscopy that the gel may be composed of pectin.

2.
Foods ; 12(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37893643

RESUMEN

This study aimed to evaluate the effectiveness of pH control, water activity (Aw), and the addition of lactic acid bacteria (LAB) on the proliferation of Escherichia coli in the curd during the manufacturing of Chihuahua cheese. Milk proved to be an excellent culture medium for E. coli, allowing it to develop at concentrations up to 109 cfu/g. However, the presence of LAB, the pH control, Aw, and especially the use of the Cheddarization process during the Chihuahua cheese production proved to be important obstacles that inhibited the proliferation of E. coli under the conditions studied. Moreover, reducing the water activity of the curd as quickly as possible is presented as the most powerful tool to inhibit the development of E. coli during the Chihuahua cheese-making process.

3.
Int J Food Sci ; 2022: 4625959, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304441

RESUMEN

There is little information on the milk coagulation process by plant proteases combined with chymosins. This work is aimed at studying the capability of protease enclosed in the ripe fruits of Solanum elaeagnifolium (commonly named trompillo) to form milk gels by itself and in combination with chymosin. For this purpose, proteases were partially purified from trompillo fruits. These proteases had a molecular weight of ~60 kDa, and results suggest cucumisin-like serine proteases, though further studies are needed to confirm this observation. Unlike chymosins, trompillo proteases had high proteolytic activity (PA = 50.23 UTyr mg protein-1) and low milk-clotting activity (MCA = 3658.86 SU mL-1). Consequently, the ratio of MCA/PA was lower in trompillo proteases (6.83) than in chymosins (187 to 223). Our result also showed that milk gels formed with trompillo proteases were softer (7.03 mPa s) and had a higher release of whey (31.08%) than the milk gels clotted with chymosin (~10 mPa s and ~4% of syneresis). However, the combination of trompillo proteases with chymosin sped up the gelling process (21 min), improved the firmness of milk gels (12 mPa s), and decreased the whey release from milk curds (3.41%). Therefore, trompillo proteases could be combined with chymosin to improve the cheese yield and change certain cheese features.

4.
Foods ; 11(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563990

RESUMEN

Requeson cheese is obtained from whey proteins. The production of this cheese is the most economical way to recover and concentrate whey proteins, which is why it is frequently made in some Latin American countries. Four requeson cheese treatments were prepared with different concentrations and combinations of salts (sodium chloride and/or potassium chloride) and were conventionally or vacuum packed. Proteolysis, peptide concentration, angiotensin-converting enzyme (ACE) inhibitory and antioxidant (DPPH and ABTS) activities were evaluated over time (one, seven and fourteen days). Requeson cheese presented antioxidant and ACE inhibitory activities, however, these values vary depending on salt addition, type of packaging and time of storage. The highest values of antioxidant activity (ABTS) were found in cheese added with 1.5% NaCl and 1.5% (NaCl/KCl, 1:1). Cheese without added salt and vacuum packed presented the highest ACE inhibition percentage at day seven. Therefore, it can be concluded that requeson cheese elaborated exclusively of sweet whey, presents antioxidant and ACE inhibition activity. However, for a cheese with ACE inhibitory capacity, it is recommended not to add salts or add at 1% (NaCl) and vacuum pack it. Additionally, for a cheese with antioxidant activity, it is recommended to add salt at 1.5% either NaCl or (1:1) NaCl/KCl and pack it either in a polyethylene bag or vacuum. In conclusion, requeson cheese elaborate with 100% sweet whey is a dairy product with antioxidant and ACE inhibition activity, being low in salt and fat.

5.
J Food Biochem ; 46(7): e14157, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35355280

RESUMEN

Lecithins are a phospholipid-rich mixture recovered from the degumming process of crude vegetable oils. Since the nineteenth century, this by-product of oil processing has been used as a food and pharmaceutical ingredient. Lecithins' popularity as an ingredient in the pharmaceutical and food industries arises from their particular properties, such as their hydrophilic-lipophilic balance, critical micellar concentration, and assembly properties. However, there is limited knowledge of the use of lecithins to formulate pharmaceutical- and food-grade microemulsions. Unlike conventional emulsions, microemulsions are thermodynamically stable systems that offer long-term stability. Besides, microemulsions show nano-sized droplets, transparency, ease of preparation and scale-up, and do not require expensive equipment. This review aims to provide a comprehensive overview of lecithins, their properties, and their use in formulating microemulsions, a promising method to incorporate, protect, and deliver bioactive compounds in pharmaceutical and food products. PRACTICAL APPLICATIONS: Lecithins are a phospholipid-rich mixture recovered from the degumming process of crude vegetable oils. Since the nineteenth century, this by-product of oil processing has been used as a food ingredient. Lecithin phospholipids are commonly used as emulsifier agents in the food and pharmaceutical industries because of their particular properties. However, there is limited knowledge of the use of lecithins to formulate pharmaceutical- or food-grade microemulsions. Unlike conventional emulsions, microemulsions are stable systems that offer long-term stability, nano-sized droplets, transparency, ease of preparation and scale-up, and do not require expensive equipment. This review aims to provide a comprehensive overview of lecithins, their properties, and their use in formulating microemulsions, a promising method to incorporate, protect, and deliver bioactive compounds such as vitamins, flavors, antioxidants, nutrients, colors, antimicrobials, and polyphenols.


Asunto(s)
Lecitinas , Aceites de Plantas , Emulsiones , Tamaño de la Partícula , Fosfolípidos
6.
Genes (Basel) ; 13(2)2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35205224

RESUMEN

Glutathione peroxidase 3 (GPx3) is the only extracellular selenoprotein (Sel) that enzymatically reduces H2O2 to H2O and O2. Two GPx3 (CqGPx3) cDNAs were characterized from crayfish Cherax quadricarinatus. The nerve cord CqGPx3a isoform encodes for a preprotein containing an N-terminal signal peptide of 32 amino acid residues, with the mature Sel region of 192 residues and a dispensable phosphorylation domain of 36 residues. In contrast, the pereiopods CqGPx3b codes for a precursor protein with 19 residues in the N-terminal signal peptide, then the mature 184 amino acid residues protein and finally a Pro-rich peptide of 42 residues. CqGPx3 are expressed in cerebral ganglia, pereiopods and nerve cord. CqGPx3a is expressed mainly in cerebral ganglia, antennulae and nerve cord, while CqGPx3b was detected mainly in pereiopods. CqGPx3a expression increases with high temperature and hypoxia; meanwhile, CqGPx3b is not affected. We report the presence and differential expression of GPx3 isoforms in crustacean tissues in normal conditions and under stress for high temperature and hypoxia. The two isoforms are tissue specific and condition specific, which could indicate an important role of CqGPx3a in the central nervous system and CqGPx3b in exposed tissues, both involved in different responses to environmental stressors.


Asunto(s)
Astacoidea , Selenio , Aminoácidos/genética , Animales , Astacoidea/genética , Astacoidea/metabolismo , Clonación Molecular , ADN Complementario/genética , Peróxido de Hidrógeno/metabolismo , Hipoxia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Señales de Clasificación de Proteína/genética , Selenio/metabolismo , Temperatura
7.
Antioxidants (Basel) ; 10(9)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34573000

RESUMEN

The effect of extrusion cooking on bioactive compounds in third-generation snacks (TGSE) and microwave-expanded snacks (MWSE) prepared using black bean, blue maize, and chard (FBCS) was evaluated. FBCS was extruded at different moisture contents (MC; 22.2-35.7%), extrusion temperatures (ET; 102-142 °C), and screw speeds (SP; 96-171 rpm). Total anthocyanin content (TAC), contents of individual anthocyanins, viz., cyanidin-3-glucoside, malvidin-3-glucoside, pelargonidin-3-glucoside, pelargonidin-3-5-diglucoside, and delphinidin-3-glucoside chloride, total phenolic content (TPC), antioxidant activity (AA), and color parameters were determined. TAC and individual anthocyanin levels increased with the reduction in ET. ET and MC affected the chemical and color properties; increase in ET caused a significant reduction in TPC and AA. Microwave expansion reduced anthocyanin content and AA, and increased TPC. Extrusion under optimal conditions (29% MC, 111 rpm, and 120 °C) generated products with a high retention of functional compounds, with high TAC (41.81%) and TPC (28.23%). Experimental validation of optimized process parameters yielded an average error of 13.73% from the predicted contents of individual anthocyanins. Results suggest that the TGSE of FBCS obtained by combining extrusion and microwave expansion achieved significant retention of bioactive compounds having potential physiological benefits for humans.

8.
Food Res Int ; 142: 110204, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33773679

RESUMEN

It has been reported that polysaccharides like carrageenan can change the crystallization of lactose. However, it is still unclear whether changes in lactose mutarotation, solubility, and super-solubility are involved in carrageenans' effect on lactose crystallization. It has been established that the conversion of α- to ß-lactose forms (mutarotation) in an aqueous solution has a significant impact on lactose crystallization. Similarly, lactose solubility changes lead to changes in the metastable zone (MZ), a region between the solubility and super-solubility of lactose. The width of this MZ determines the temperature drop necessary to induce lactose nucleation. This work aimed to study the effect of carrageenans on lactose mutarotation and solubility. For this purpose, lactose solutions were added with ι and κ- carrageenan at two concentrations: 50 and 100 mg L-1. Optical rotation measurements estimated the proportion of ß/α isomers in lactose solutions. Besides, solubility and super- solubility was determined to build the MZ. The presence of carrageenans changed both the time to reach the mutarotation balance and the proportion of ß/α isomers at mutarotation equilibrium. Carrageenans decreased the solubility of lactose in a range of temperatures between 10 and 60 °C and reduced the metastable zone width (MZW).


Asunto(s)
Lactosa , Carragenina , Cristalización , Solubilidad , Temperatura
9.
Foods ; 9(10)2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023126

RESUMEN

Lactic acid bacteria (LAB) are an important source of bioactive metabolites and enzymes. LAB isolates from fresh vegetable sources were evaluated to determine their antimicrobial, enzymatic, and adhesion activities. A saline solution from the rinse of each sample was inoculated in De Man, Rogosa and Sharpe Agar (MRS Agar) for isolates recovery. Antimicrobial activity of cell-free supernatants from presumptive LAB isolates was evaluated by microtitration against Gram-positive, Gram-negative, LAB, mold, and yeast strains. Protease, lipase, amylase, citrate metabolism and adhesion activities were also evaluated. Data were grouped using cluster analysis, with 85% of similarity. A total of 76 LAB isolates were recovered, and 13 clusters were formed based on growth inhibition of the tested microorganisms. One cluster had antimicrobial activity against Gram-positive bacteria, molds and yeasts. Several LAB strains, PIM4, ELO8, PIM5 and CAL14 strongly inhibited the growth of L. monocytogenes and JAV15 and TOV9 strongly inhibited the growth of F. oxysporum. Based on enzymatic activities, 5 clusters were formed. Seven isolates hydrolyzed starch, 46 proteins, 14 lipids, and 36 metabolized citrate. LAB isolates with the best activities were molecularly identified as Leuconostoc mesenteroides, Enterococcus mundtii and Enterococcus faecium. Overall, LAB isolated from vegetables showed potential technological applications and should be further evaluated.

10.
Foods ; 9(8)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784385

RESUMEN

Compounds from spices and herbs extracts are being explored as natural antibacterial additives. A plant extract used in traditional folk medicine is Hibiscus sabdariffa L., also known as Roselle. Therefore, the potential use of a phenolic hibiscus extract as antibacterial or natural food preservative was analyzed in vitro and in situ. A phenolic extract was obtained from hibiscus calyces and fractionated, and then the fractions were tested against foodborne pathogen bacteria. Liquid-liquid extraction and solid-phase extraction were used to fractionate the hibiscus extract, and HPLC was employed to analyze the fractions' phenolic composition. Minimum bactericidal concentration (MBC) and minimal inhibitory concentration (MIC) were calculated for brute hibiscus phenolic extract, each of the fractions and pure commercial phenolic compounds. Bacteria tested were Escherichia coli, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, Listeria monocytogenes and Bacillus cereus. The fraction obtained after liquid-liquid extraction presented the best performance of MBC and MIC against the bacteria tested. Furthermore, a hibiscus ethanolic extract was employed as a natural preservative to extend the shelf-life of beef. Microbiological, color and sensory analyses were performed to the meat during the shelf-life test. The application of the phenolic hibiscus extract also showed an increase of the duration of the meat`s shelf life.

11.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936493

RESUMEN

Manganese peroxidases (MnP) from the white-rot fungi Phanerochaete chrysosporium catalyse the oxidation of Mn2+ to Mn3+, a strong oxidizer able to oxidize a wide variety of organic compounds. Different approaches have been used to unravel the enzymatic properties and potential applications of MnP. However, these efforts have been hampered by the limited production of native MnP by fungi. Heterologous expression of MnP has been achieved in both eukaryotic and prokaryotic expression systems, although with limited production and many disadvantages in the process. Here we described a novel molecular approach for the expression and purification of manganese peroxidase isoform 1 (MnP1) from P. chrysosporium using an E. coli-expression system. The proposed strategy involved the codon optimization and chemical synthesis of the MnP1 gene for optimised expression in the E. coli T7 shuffle host. Recombinant MnP1 (rMnP1) was expressed as a fusion protein, which was recovered from solubilised inclusion bodies. rMnP1 was purified from the fusion protein using intein-based protein purification techniques and a one-step affinity chromatography. The designated strategy allowed production of an active enzyme able to oxidize guaiacol or Mn2+.


Asunto(s)
Escherichia coli/metabolismo , Expresión Génica , Peroxidasas/aislamiento & purificación , Phanerochaete/enzimología , Secuencia de Aminoácidos , Pruebas de Enzimas , Vectores Genéticos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Estándares de Referencia , Solubilidad
12.
J Food Biochem ; 43(7): e12896, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31353692

RESUMEN

Maize silks have been used in Mexico for centuries as a natural-based treatment for various illnesses, including obesity and diabetes. It has been shown in mice that intake of maize silk extracts reduces the levels of blood glucose. However, it is not clear how or what maize silk compounds are involved in such an effect. A hypothesized mechanism is that some maize silk compounds can inhibit carbohydrate hydrolyzing enzymes like α-glucosidases. This work aimed to assess the capability of both saccharides and phenolic compounds from maize silks to inhibit intestinal α-glucosidases. Results showed that saccharides from maize silks did not produce inhibition on intestinal α-glucosidases, but phenolics did. Maize silk phenolics increased the value of Km significantly and decreased the Vmax slightly, indicating a mixed inhibition of α-glucosidases. According to the molecular docking analysis, the phenolics maysin, methoxymaysin, and apimaysin, which had the highest predicted binding energies, could be responsible for the inhibition of α-glucosidases. PRACTICAL APPLICATIONS: The International Diabetes Federation (IDF) reported in 2017 that diabetes affects over 424 million people worldwide, and caused 4 million deaths. Non-insulin-dependent diabetes or type 2 diabetes mellitus (T2DM) accounts for ∼90% of cases. T2DM is characterized by insulin resistance and pancreatic ß-cell failure. Therapy for T2DM includes the use of sulfonylureas, thiazolidinediones, biguanides, and α-glucosidase inhibitors. Regarding the α-glucosidase inhibitors, only few are commercially available, and these have been associated with severe gastrointestinal side effects. This work aimed to assess the capability of both saccharides and phenolic compounds from maize silks to inhibit intestinal α-glucosidases. Results from this work evidenced that maize silk polyphenols acted as effective inhibitors of intestinal rat α-glucosidases. Computational analysis of maize silk polyphenols indicated that maysin, a particular flavonoid from maize silks, could be responsible for the inhibition of α-glucosidases.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Flores/química , Inhibidores de Glicósido Hidrolasas/farmacología , Hipoglucemiantes/farmacología , Fenoles/farmacología , Zea mays/química , alfa-Glucosidasas/metabolismo , Glucemia/efectos de los fármacos , Flavonoides/química , Flavonoides/farmacología , Glucósidos/química , Glucósidos/farmacología , Inhibidores de Glicósido Hidrolasas/química , Hipoglucemiantes/química , Intestinos/enzimología , Cinética , Simulación del Acoplamiento Molecular , Fenoles/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Polifenoles/química , Polifenoles/farmacología
13.
Food Res Int ; 116: 455-461, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30716968

RESUMEN

Lactose is recovered by crystallization from cheese whey that is a by-product of cheesemaking. The whey used for the recovery of lactose usually has a residual content of protein that alters the crystallization of lactose. In addition, the pH of whey may fluctuate depending on the cheese variety. However, there is little information on how the pH modifies the effect that whey proteins have on lactose crystallization. Accordingly, this work aimed to evaluate the individual and combined effect of whey proteins and pH on the kinetics of crystallization, the crystal size distribution and the crystallinity of lactose. The addition of whey proteins in lactose solutions (25% v/v) modified the process of lactose crystallization. However, the effect that whey proteins had on lactose crystallization heavily depended on the pH. The number of crystals per milliliter as well as the growth and size distribution of crystals was the most affected with the changes in pH (pHs of 7, 5.5 and 4) and the addition of whey proteins (0 and 0.63%). All the treatment produced mostly α-lactose monohydrated but some treatments also generated crystals of ß-lactose (pH 5.5, 0% of proteins). Amorphous lactose was observed mainly in lactose solutions adjusted at pH 7 and added with whey proteins. This particular treatment also incorporated the highest amount of protein into the lattice of lactose crystals. The results of this work highlight the importance of controlling the pH of lactose crystallization, especially if there is a presence of whey proteins.


Asunto(s)
Lactosa/química , Proteína de Suero de Leche/química , Proteínas Sanguíneas , Cristalización/métodos , Concentración de Iones de Hidrógeno , Cinética , Tamaño de la Partícula
14.
Foods ; 8(2)2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30704018

RESUMEN

Cream cheese is a fresh acid-curd cheese with pH values of 4.5⁻4.8. Some manufacturers add a small volume of rennet at the beginning of milk fermentation to improve the texture of the cream cheese. However, there is no information about the effect that proteases other than chymosin-like plant-derived proteases may have on cream cheese manufacture. This work aimed to describe some proteolytic features of the protease extracted from fruits of Solanum elaeagnifolium Cavanilles and to assess the impact that this plant coagulant has on the viscoelastic properties of cream cheeses. Results showed that caseins were not hydrolyzed extensively by this plant-derived coagulant. In consequence, the ratio of milk clotting units (U) to proteolytic activity (U-Tyr) was higher (1184.4 U/U-Tyr) than reported for other plant proteases. The plant coagulant modified neither yield nor composition of cream cheeses, but viscoelastic properties did. Cream cheeses made with chymosin had a loss tangent value (tan δ = 0.257) higher than observed in cheeses made with 0.8 mL of plant-derived coagulant per liter (tan δ = 0.239). It is likely that casein fragments released by the plant-derived coagulant improve the interaction of protein during the formation of acid curds, leading to an increase in the viscoelastic properties of cream cheese.

15.
Foods ; 7(5)2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29735916

RESUMEN

Boneless strip loins from mature cows (50 to 70 months of age) were vacuum impregnated (VI) with an isotonic solution (IS) of sodium chloride. This study sought to determine the vacuum impregnation and microstructural properties of meat from cull cows. The experiments were conducted by varying the pressure, p 1 (20.3, 71.1 kPa), and time, t 1 (0.5, 2.0, 4.0 h), of impregnation. After the VI step, the meat was kept for a time, t 2 (0.0, 0.5, 2.0, 4.0 h), in the IS under atmospheric pressure. The microstructural changes, impregnation, deformation, and porosity of the meat were measured in all the treatments. Impregnation and deformation levels in terms of volume fractions of the initial sample at the end of the vacuum step and the VI processes were calculated according to the mathematical model for deformation-relaxation and hydrodynamic mechanisms. Scanning electron microscopy (SEM) was used to study the microstructure of the vacuum-impregnated meat samples. Results showed that both the vacuum and atmospheric pressures generated a positive impregnation and deformation. The highest values of impregnation X (10.5%) and deformation γ (9.3%) were obtained at p 1 of 71.1 kPa and t 1 of 4.0 h. The sample effective porosity ( ε e ) exhibited a significant interaction (p < 0.01) between p 1 × t 1 . The highest ε e (14.0%) was achieved at p 1 of 20.3 kPa and t 1 of 4.0 h, whereas the most extended distension of meat fibers (98 μm) was observed at the highest levels of p1, t1, and t2. These results indicate that meat from mature cows can undergo a vacuum-wetting process successfully, with an IS of sodium chloride to improve its quality.

16.
Ultrason Sonochem ; 42: 714-722, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29429722

RESUMEN

The conventional process of lactose crystallization is prolonged, hardly controllable and the crystals have low quality. In this work, the effect of ultrasound on the crystallization of lactose in an aqueous system was assessed. Additionally, it was studied how the presence of whey proteins (which are a common impurity) and κ-carrageenan (that possess high water-binding capacity) could modify the process of lactose crystallization. Lactose solutions at 25% were sonicated in a continuous flow chamber at two different energy densities (9 and 50 J mL-1) before the start of crystallization. Some of these lactose solutions were previously added with κ-carrageenan (0, 150 and 300 mg L-1), with whey proteins (0.64%) or with both at the same time. Ultrasound sped up the rate of crystallization, decreased the crystal's size and narrowed the crystal size distribution (CSD). The presence of whey proteins accelerated the process of crystallization but induced the formation of amorphous lactose. Likewise, the rate of lactose crystallization was improved by the addition of 150 mg L-1 of carrageenan. Whereas, the combination of carrageenan and whey proteins generated the smallest crystals (6 µm), the narrowest CSD and minimized the formation of amorphous lactose.


Asunto(s)
Carragenina/química , Cristalización/métodos , Lactosa/química , Ondas Ultrasónicas , Proteína de Suero de Leche/química , Cinética
17.
Int J Food Sci ; 2018: 8494105, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30675494

RESUMEN

Chihuahua cheese is a local artisanal cheese traditionally produced from raw milk. When this cheese is produced with pasteurized milk, cheesemakers complain that there are differences in taste and aroma as compared with traditional manufacturing. This work aimed to obtain a descriptive sensory analysis of Chihuahua cheese manufactured with raw milk under traditional conditions. Samples were collected in five cheese dairies at two different seasons (summer and autumn), and a Quantitative Descriptive Sensorial Analysis was done by a panel of trained judges. For aroma descriptors, cooked descriptor showed differences between dairies, and whey was different among dairies and sampling seasons (P<0.01); diacetyl, fruity (P<0.01), as well as free fatty acids, nutty and sulphur (P<0.05) descriptors varied between seasons. For flavour descriptors, bitter perception was different between dairies and seasons (P<0.01). Salty and creamy cheese was also different among dairies (P<0.01). A Principal Component Analysis for differences among dairies and sampling season demonstrated that the first three components accounted for 90% of the variance; variables were more affected by the sampling seasons than by the geographical location or if the dairy was operated by Mennonites. Chihuahua cheese sensorial profile can be described as a semi-matured cheese with a bitter flavour, slightly salted, and with a cream flavour, with aroma notes associated with whey and sour milk. Principal Component Analysis demonstrated season influence on flavour and aroma characteristics.

18.
Foods ; 5(1)2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-28231106

RESUMEN

Clarified and standardized apple juice was ultraviolet-irradiated to inactivate polyphenol oxidase enzyme and microbiota, and its effect on bioactive compounds and stability during storage was also evaluated. Apple juice was irradiated with 345.6 J/cm² and treatment effect was evaluated in terms of color, antioxidant capacity, polyphenol content, pH, titratable acidity and total soluble solids. Using a linear regression design, inactivation kinetic of polyphenol oxidase enzyme was also described. In addition, a repeated measures design was carried out to evaluate apple juice during 24 days of storage at 4 °C and 20 °C. After irradiation, reduction of antioxidant capacity was observed while during storage, ascorbic acid content decreased up to 40% and total polyphenol content remain stable. Ultraviolet irradiation achieved a complete inactivation of polyphenol oxidase enzyme and microbiota, keeping apple juice antioxidants during ultraviolet treatment and storage available until juice consumption. UV-treated apple juice can be used as a regular beverage, ensuring antioxidant intake.

19.
Pol J Microbiol ; 65(3): 279-285, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-29334047

RESUMEN

During a screening of lactic acid bacteria producing bacteriocin from Cotija cheese, the strain QC38 was isolated. Based on the 16S rRNA gene nucleotide sequencing (516 pb accession no KJ210322) and phylogenetic analysis, the isolate was identified as Pediococcus acidilactici. Neutralized cell-free supernatant was tested for antimicrobial activity against 17 Gram-negative and Gram-positive pathogens. Growth inhibition was achieved against Listeria monocytogenes (supplier or indication or source), Staphylococcus aureus, Vibrio vulnificus, Vibrio cholerae O1 Ogawa, Vibrio cholerae NO 01 and Salmonella enterica subsp. Enterica serovar Typhimurium. Bacteriocin-like substance, after heating at 121°C for 15 min it remained stable and its antimicrobial activity was observed at pH ranging from 1.0 to 10.0 but inactivated by α-chymotrypsin and proteinase K. Strain QC38 was able to grow in 1-9% NaCl concentration. The plate overlay assay showed an approximate size of bacteriocin-like substance between 3.4 and 6.5 kDa. P. acidilactici QC38 harboured a plasmid that contains a gene for a pediocin (PA-1).


Asunto(s)
Antibacterianos/farmacología , Bacteriocinas/química , Bacteriocinas/farmacología , Queso/microbiología , Pediococcus acidilactici/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Bacteriocinas/metabolismo , Concentración de Iones de Hidrógeno , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Pediococcus acidilactici/clasificación , Pediococcus acidilactici/genética , Pediococcus acidilactici/aislamiento & purificación , Filogenia , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
20.
Braz. j. microbiol ; Braz. j. microbiol;42(4): 1495-1499, Oct.-Dec. 2011. graf, tab
Artículo en Inglés | LILACS | ID: lil-614615

RESUMEN

The aim of this work was to assess in-vitro the effect of pH and salt concentration on the rate of autolysis in L. lactis strains. Regardless autolysis variation among L. lactis strains, statistical analysis showed evidence of increase of autolysis in L. lactis under low salt concentration and acidic conditions.


Asunto(s)
Autólisis , Activación Enzimática , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Lactococcus lactis/aislamiento & purificación , Interpretación Estadística de Datos , Microbiología de Alimentos , Métodos , Métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA