Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biol Res ; 57(1): 22, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704609

RESUMEN

BACKGROUND: Chromatin dynamics is deeply involved in processes that require access to DNA, such as transcriptional regulation. Among the factors involved in chromatin dynamics at gene regulatory regions are general regulatory factors (GRFs). These factors contribute to establishment and maintenance of nucleosome-depleted regions (NDRs). These regions are populated by nucleosomes through histone deposition and nucleosome sliding, the latter catalyzed by a number of ATP-dependent chromatin remodeling complexes, including ISW1a. It has been observed that GRFs can act as barriers against nucleosome sliding towards NDRs. However, the relative ability of the different GRFs to hinder sliding activity is currently unknown. RESULTS: Considering this, we performed a comparative analysis for the main GRFs, with focus in their ability to modulate nucleosome sliding mediated by ISW1a. Among the GRFs tested in nucleosome remodeling assays, Rap1 was the only factor displaying the ability to hinder the activity of ISW1a. This effect requires location of the Rap1 cognate sequence on linker that becomes entry DNA in the nucleosome remodeling process. In addition, Rap1 was able to hinder nucleosome assembly in octamer transfer assays. Concurrently, Rap1 displayed the highest affinity for and longest dwell time from its target sequence, compared to the other GRFs tested. Consistently, through bioinformatics analyses of publicly available genome-wide data, we found that nucleosome occupancy and histone deposition in vivo are inversely correlated with the affinity of Rap1 for its target sequences in the genome. CONCLUSIONS: Our findings point to DNA binding affinity, residence time and location at particular translational positions relative to the nucleosome core as the key features of GRFs underlying their roles played in nucleosome sliding and assembly.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN , Nucleosomas , Nucleosomas/metabolismo , Nucleosomas/genética , Ensamble y Desensamble de Cromatina/fisiología , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Histonas/metabolismo
2.
Biol. Res ; 572024.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1564037

RESUMEN

Background Chromatin dynamics is deeply involved in processes that require access to DNA, such as transcriptional regulation. Among the factors involved in chromatin dynamics at gene regulatory regions are general regulatory factors (GRFs). These factors contribute to establishment and maintenance of nucleosome-depleted regions (NDRs). These regions are populated by nucleosomes through histone deposition and nucleosome sliding, the latter catalyzed by a number of ATP-dependent chromatin remodeling complexes, including ISW1a. It has been observed that GRFs can act as barriers against nucleosome sliding towards NDRs. However, the relative ability of the different GRFs to hinder sliding activity is currently unknown. Results Considering this, we performed a comparative analysis for the main GRFs, with focus in their ability to modulate nucleosome sliding mediated by ISW1a. Among the GRFs tested in nucleosome remodeling assays, Rap1 was the only factor displaying the ability to hinder the activity of ISW1a. This effect requires location of the Rap1 cognate sequence on linker that becomes entry DNA in the nucleosome remodeling process. In addition, Rap1 was able to hinder nucleosome assembly in octamer transfer assays. Concurrently, Rap1 displayed the highest affinity for and longest dwell time from its target sequence, compared to the other GRFs tested. Consistently, through bioinformatics analyses of publicly available genome-wide data, we found that nucleosome occupancy and histone deposition in vivo are inversely correlated with the affinity of Rap1 for its target sequences in the genome. Conclusions Our findings point to DNA binding affinity, residence time and location at particular translational positions relative to the nucleosome core as the key features of GRFs underlying their roles played in nucleosome sliding and assembly.

3.
Cell Biosci ; 13(1): 232, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135881

RESUMEN

BACKGROUND: mTORC2 is a critical regulator of cytoskeleton organization, cell proliferation, and cancer cell survival. Activated mTORC2 induces maximal activation of Akt by phosphorylation of Ser-473, but regulation of Akt activity and signaling crosstalk upon growth factor stimulation are still unclear. RESULTS: We identified that NUAK1 regulates growth factor-dependent activation of Akt by two mechanisms. NUAK1 interacts with mTORC2 components and regulates mTORC2-dependent activation of Akt by controlling lysosome positioning and mTOR association with this organelle. A second mechanism involves NUAK1 directly phosphorylating Akt at Ser-473. The effect of NUAK1 correlated with a growth factor-dependent activation of specific Akt substrates. NUAK1 induced the Akt-dependent phosphorylation of FOXO1/3a (Thr-24/Thr-32) but not of TSC2 (Thr-1462). According to a subcellular compartmentalization that could explain NUAK1's differential effect on the Akt substrates, we found that NUAK1 is associated with early endosomes but not with plasma membrane, late endosomes, or lysosomes. NUAK1 was required for the Akt/FOXO1/3a axis, regulating p21CIP1, p27KIP1, and FoxM1 expression and cancer cell survival upon EGFR stimulation. Pharmacological inhibition of NUAK1 potentiated the cell death effect induced by Akt or mTOR pharmacological blockage. Analysis of human tissue data revealed that NUAK1 expression positively correlates with EGFR expression and Akt Ser-473 phosphorylation in several human cancers. CONCLUSIONS: Our results showed that NUAK1 kinase controls mTOR subcellular localization and induces Akt phosphorylation, demonstrating that NUAK1 regulates the growth factor-dependent activation of Akt signaling. Therefore, targeting NUAK1, or co-targeting it with Akt or mTOR inhibitors, may be effective in cancers with hyperactivated Akt signaling.

4.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37834378

RESUMEN

Bisphenols such as bisphenol A (BPA), S (BPS), C (BPC), F (BPF), AF (BPAF), tetrabromobisphenol, nonylphenol, and octylphenol are plasticizers used worldwide to manufacture daily-use articles. Exposure to these compounds is related to many pathologies of public health importance, such as infertility. Using a protector compound against the reproductive toxicological effects of bisphenols is of scientific interest. Melatonin and vitamins have been tested, but the results are not conclusive. To this end, this systematic review and meta-analysis compared the response of reproductive variables to melatonin and vitamin administration as protectors against damage caused by bisphenols. We search for controlled studies of male rats exposed to bisphenols to induce alterations in reproduction, with at least one intervention group receiving melatonin or vitamins (B, C, or E). Also, molecular docking simulations were performed between the androgen (AR) and estrogen receptors (ER), melatonin, and vitamins. About 1234 records were initially found; finally, 13 studies were qualified for review and meta-analysis. Melatonin plus bisphenol improves sperm concentration and viability of sperm and increases testosterone serum levels compared with control groups; however, groups receiving vitamins plus bisphenols had lower sperm concentration, total testis weight, and testosterone serum levels than the control. In the docking analysis, vitamin E had the highest negative MolDock score, representing the best binding affinity with AR and ER, compared with other vitamins and melatonin in the docking. Our findings suggest that vitamins could act as an endocrine disruptor, and melatonin is most effective in protecting against the toxic effects of bisphenols.


Asunto(s)
Disruptores Endocrinos , Melatonina , Masculino , Ratas , Animales , Melatonina/farmacología , Vitaminas , Simulación del Acoplamiento Molecular , Semen/metabolismo , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/química , Reproducción , Receptores de Estrógenos , Vitamina A , Vitamina K , Testosterona/metabolismo , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/química
5.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894925

RESUMEN

The establishment and maintenance of nucleosome-free regions (NFRs) are prominent processes within chromatin dynamics. Transcription factors, ATP-dependent chromatin remodeling complexes (CRCs) and DNA sequences are the main factors involved. In Saccharomyces cerevisiae, CRCs such as RSC contribute to chromatin opening at NFRs, while other complexes, including ISW1a, contribute to NFR shrinking. Regarding DNA sequences, growing evidence points to poly(dA:dT) tracts as playing a direct role in active processes involved in nucleosome positioning dynamics. Intriguingly, poly(dA:dT)-tract-containing NFRs span asymmetrically relative to the location of the tract by a currently unknown mechanism. In order to obtain insight into the role of poly(dA:dT) tracts in nucleosome remodeling, we performed a systematic analysis of their influence on the activity of ISW1a and RSC complexes. Our results show that poly(dA:dT) tracts differentially affect the activity of these CRCs. Moreover, we found differences between the effects exerted by the two alternative tract orientations. Remarkably, tract-containing linker DNA is taken as exit DNA for nucleosome sliding catalyzed by RSC. Our findings show that defined DNA sequences, when present in linker DNA, can dictate in which direction a remodeling complex has to slide nucleosomes and shed light into the mechanisms underlying asymmetrical chromatin opening around poly(dA:dT) tracts.


Asunto(s)
Nucleosomas , Proteínas de Saccharomyces cerevisiae , Poli dA-dT , Cromatina/genética , ADN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Arch. cardiol. Méx ; Arch. cardiol. Méx;93(3): 380-381, jul.-sep. 2023. graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1513598
7.
Virol J ; 20(1): 19, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726151

RESUMEN

Several factors are associated with the severity of the respiratory disease caused by the influenza virus. Although viral factors are one of the most studied, in recent years the role of the microbiota and co-infections in severe and fatal outcomes has been recognized. However, most of the work has focused on the microbiota of the upper respiratory tract (URT), hindering potential insights from the lower respiratory tract (LRT) that may help to understand the role of the microbiota in Influenza disease. In this work, we characterized the microbiota of the LRT of patients with Influenza A using 16S rRNA sequencing. We tested if patients with different outcomes (deceased/recovered) and use of antibiotics differ in their microbial community composition. We found important differences in the diversity and composition of the microbiota between deceased and recovered patients. In particular, we detected a high abundance of opportunistic pathogens such as Granulicatella, in patients either deceased or with antibiotic treatment. Also, we found antibiotic treatment correlated with lower diversity of microbial communities and with lower probability of survival in Influenza A patients. Altogether, the loss of microbial diversity could generate a disequilibrium in the community, potentially compromising the immune response increasing viral infectivity, promoting the growth of potentially pathogenic bacteria that, together with altered biochemical parameters, can be leading to severe forms of the disease. Overall, the present study gives one of the first characterizations of the diversity and composition of microbial communities in the LRT of Influenza patients and its relationship with clinical variables and disease severity.


Asunto(s)
Gripe Humana , Microbiota , Síndrome de Dificultad Respiratoria , Sistema Respiratorio , Humanos , Gripe Humana/genética , Gripe Humana/microbiología , Gripe Humana/virología , Microbiota/genética , Nariz , Sistema Respiratorio/microbiología , ARN Ribosómico 16S/genética
8.
Biochim Biophys Acta Gene Regul Mech ; 1865(1): 194781, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34963628

RESUMEN

Diverse factors play roles in chromatin dynamics, including linker proteins. Among them are high mobility group (HMG) box family proteins and linker histones. In the yeast Saccharomyces cerevisiae, Hmo1 has been identified as an HMG-box protein. This protein displays properties that are in agreement with this allocation. However, a number of studies have postulated that Hmo1 functions as a linker histone in yeast. On the other hand, when discovered, the Hho1 protein was identified as a linker histone. While multiple studies support this classification, some findings point to characteristics of Hho1 that are dissimilar to those commonly assigned to linker histones. In order to better understand the roles played by Hmo1 and Hho1 in chromatin dynamics and transcriptional regulation, we performed several analyses directly comparing these two proteins. Our analyses of genome-wide binding profiles support the belonging of Hmo1 to the HMGB family and Hho1 to the linker histones family. Interestingly, by performing protein-protein interaction analyses we found that both Hmo1 and Hho1 display physical interaction with the ATP-dependent chromatin remodeling complexes RSC, ISW1a and SWI/SNF. Moreover, by carrying out nucleosome remodeling assays, we found that both proteins stimulate the activity of the ISW1a complex. However, in the case of RSC, Hmo1 and Hho1 displayed differential properties, with Hho1 mainly showing an inhibitory effect. Our results are in agreement with the opposite roles played by RSC and ISW1a in chromatin dynamics and transcriptional regulation, and expand the view for the roles played by Hho1 and linker histones.


Asunto(s)
Adenosina Trifosfato , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Ensamble y Desensamble de Cromatina , Histonas/metabolismo , Nucleosomas , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
10.
11.
13.
Arch. cardiol. Méx ; Arch. cardiol. Méx;90(1): 42-47, Jan.-Mar. 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1131004

RESUMEN

Abstract Background: Despite increase in survival of human immunodeficiency virus (HIV) patients due to highly active antiretroviral therapy, non-infectious complications are still prevalent such as presentation of lung vasculopathy, even in asymptomatic patients. Endothelial nitric oxide synthase (eNOS) is necessary to produce nitric oxide that causes pulmonary endothelial vasodilation. Participation of this protein in the pulmonary circulation in HIV patients has not been elucidated. This work studied the presence and expression of eNOS in pulmonary complex vascular lesions associated with HIV (PCVL/HIV). Methods: In lung tissues from patients who died from complications of HIV, we used immunohistochemistry and immune chemiluminescence (imageJ) to determine the different degrees of expression of eNOS in PCVL-HIV in comparison with non-PCVL/HIV. Reagents used were anti-eNOS and an automated system. All data are presented as mean and standard deviation. Differences were analyzed with Wilcoxon; p < 0.05 was accepted as statistically significant. Results: In 57 tissues, the histological evidence of pulmonary vasculopathy was showed as different types (proliferative, obliterative, and plexiform) and severe presentation of vasculopathy than non-PCVL/HIV. A statistically significant decrease of eNOS was observed in all PCVL/HIV tissue samples. Conclusion: eNOS has a relevant role in the pathogenesis of pulmonary vasculopathy in acquired immunodeficiency syndrome patients. It is necessary to determine in the future the participation of eNOS and other mechanisms involved in PCVL/HIV.


Resumen Antecedentes: A pesar del incremento en la sobrevivencia del paciente con virus de inmunodeficiencia humana (VIH) debido al uso del tratamiento antiretroviral altamente efectivo, las complicaciones no infecciosas siguen ocasionando vasculopatía pulmonar, aun en pacientes asintomáticos. La óxido nítrico sintetasa (ONSe) es necesaria para la producción de óxido nítrico la cual provoca vasodilatación pulmonar. La participación de esta proteína en la circulación pulmonar en los pacientes con VIH aún no se ha dilucidado. Este trabajo estudia la presencia y la expresión de ONSe en las lesiones vasculares pulmonares complejas asociadas al VIH (LVPC/VIH). Métodos: En tejidos pulmonares de pacientes que fallecieron por complicaciones del VIH, se utilizó inmunohistoquímica e inmunoquimioluminescencia (imageJ) para determinar los diferentes grados de expresión de la ONSe en LVPC/VIH. Los reactivos utilizados son anti-ONSe en sistema automatizado. Todos los datos son presentados en media y desviación estándar. Las diferencias son analizadas con la prueba de Wilcoxon; se aceptó como estadísticamente significativa una p < 0.05. Resultados: En 57 pacientes, la histología de la vasculopatía pulmonar mostró diferentes tipos (proliferativo, obliterativo y plexiforme) además de varias presentaciones de vasculopatía en tejidos no-LVPC/VIH. Se observó diferencia estadística en la disminución de ONSe en todos los tejidos LVPC/VIH. Conclusiones: La ONSe tiene un papel relevante en la patogénesis de la vasculopatía pulmonar en el VIH. Es necesario determinar en el futuro la participación de ONSe y otros mecanismos involucrados en LVPC/VIH.


Asunto(s)
Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Adulto Joven , Enfermedades Vasculares/fisiopatología , Infecciones por VIH/complicaciones , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Arteria Pulmonar/fisiopatología , Enfermedades Vasculares/enzimología , Enfermedades Vasculares/virología , Índice de Severidad de la Enfermedad
14.
Arch Cardiol Mex ; 90(1): 93-98, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31996864

RESUMEN

Background: Despite increase in survival of human immunodeficiency virus (HIV) patients due to highly active antiretroviral therapy, non-infectious complications are still prevalent such as presentation of lung vasculopathy, even in asymptomatic patients. Endothelial nitric oxide synthase (eNOS) is necessary to produce nitric oxide that causes pulmonary endothelial vasodilation. Participation of this protein in the pulmonary circulation in HIV patients has not been elucidated. This work studied the presence and expression of eNOS in pulmonary complex vascular lesions associated with HIV (PCVL/HIV). Methods: In lung tissues from patients who died from complications of HIV, we used immunohistochemistry and immune chemiluminescence (imageJ) to determine the different degrees of expression of eNOS in PCVL-HIV in comparison with non-PCVL/HIV. Reagents used were anti-eNOS and an automated system. All data are presented as mean and standard deviation. Differences were analyzed with Wilcoxon; p < 0.05 was accepted as statistically significant. Results: In 57 tissues, the histological evidence of pulmonary vasculopathy was showed as different types (proliferative, obliterative, and plexiform) and severe presentation of vasculopathy than non-PCVL/HIV. A statistically significant decrease of eNOS was observed in all PCVL/HIV tissue samples. Conclusion: eNOS has a relevant role in the pathogenesis of pulmonary vasculopathy in acquired immunodeficiency syndrome patients. It is necessary to determine in the future the participation of eNOS and other mechanisms involved in PCVL/HIV.


Antecedentes: A pesar del incremento en la sobrevivencia del paciente con virus de inmunodeficiencia humana (VIH) debido al uso del tratamiento antiretroviral altamente efectivo, las complicaciones no infecciosas siguen ocasionando vasculopatía pulmonar, aun en pacientes asintomáticos. La óxido nítrico sintetasa (ONSe) es necesaria para la producción de óxido nítrico la cual provoca vasodilatación pulmonar. La participación de esta proteína en la circulación pulmonar en los pacientes con VIH aún no se ha dilucidado. Este trabajo estudia la presencia y la expresión de ONSe en las lesiones vasculares pulmonares complejas asociadas al VIH (LVPC/VIH). Métodos: En tejidos pulmonares de pacientes que fallecieron por complicaciones del VIH, se utilizó inmunohistoquímica e inmunoquimioluminescencia (imageJ) para determinar los diferentes grados de expresión de la ONSe en LVPC/VIH. Los reactivos utilizados son anti-ONSe en sistema automatizado. Todos los datos son presentados en media y desviación estándar. Las diferencias son analizadas con la prueba de Wilcoxon; se aceptó como estadísticamente significativa una p < 0.05. Resultados: En 57 pacientes, la histología de la vasculopatía pulmonar mostró diferentes tipos (proliferativo, obliterativo y plexiforme) además de varias presentaciones de vasculopatía en tejidos no-LVPC/VIH. Se observó diferencia estadística en la disminución de ONSe en todos los tejidos LVPC/VIH. Conclusiones: La ONSe tiene un papel relevante en la patogénesis de la vasculopatía pulmonar en el VIH. Es necesario determinar en el futuro la participación de ONSe y otros mecanismos involucrados en LVPC/VIH.


Asunto(s)
Infecciones por VIH/complicaciones , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Enfermedades Vasculares/fisiopatología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Arteria Pulmonar/fisiopatología , Índice de Severidad de la Enfermedad , Enfermedades Vasculares/enzimología , Enfermedades Vasculares/virología , Adulto Joven
15.
Biochim Biophys Acta Gene Regul Mech ; 1860(3): 316-326, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28089519

RESUMEN

Diverse chromatin modifiers are involved in regulation of gene expression at the level of transcriptional regulation. Among these modifiers are ATP-dependent chromatin remodelers, where the SWI/SNF complex is the founding member. It has been observed that High Mobility Group (HMG) proteins can influence the activity of a number of these chromatin remodelers. In this context, we have previously demonstrated that the yeast HMG proteins Nhp6 and Hmo1 can stimulate SWI/SNF activity. Here, we studied the genome-wide binding patterns of Nhp6, Hmo1 and the SWI/SNF complex, finding that most of gene promoters presenting high occupancy of this complex also display high enrichment of these HMG proteins. Using deletion mutant strains we demonstrate that binding of SWI/SNF is significantly reduced at numerous genomic locations by deletion of NHP6 and/or deletion of HMO1. Moreover, alterations in the nucleosome landscape take place at gene promoters undergoing reduced SWI/SNF binding. Additional analyses show that these effects also correlate with alterations in transcriptional activity. Our results suggest that, besides the ability to stimulate SWI/SNF activity, these HMG proteins are able to assist the loading of this complex onto gene regulatory regions.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas HMGN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Nucleosomas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas HMGN/genética , Proteínas del Grupo de Alta Movilidad/genética , Nucleosomas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
16.
J Cell Biochem ; 117(8): 1797-805, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26729411

RESUMEN

Proper regulation of gene expression is essential for normal development, cellular growth, and differentiation. Differential expression profiles of mRNA coding for vertebrate Ric-8B during embryo and adult stages have been observed. In addition, Ric-8B is expressed in few cerebral nuclei subareas. These facts point to a dynamic control of RIC8B gene expression. In order to understand the transcriptional regulation of this gene, we searched for cis-elements in the sequence of the human RIC8B promoter region, identifying binding sites for the basic/leucine zipper (bZip) CREB transcription factor family (CRE sites) and C/EBP transcription factor family (C/EBP sites). CRE sites were found clustered near the transcription start site, while the C/EBP sites were found clustered at around 300 bp upstream the CRE sites. Here, we demonstrate the ability of CREB1 and C/EBPß to bind their respective elements identified in the RIC8B promoter. Comparative protein-DNA interaction analyses revealed only the proximal elements as high affinity sites for CREB1 and only the distal elements as high affinity sites for C/EBPß. Chromatin immunoprecipitation analyses, carried out using a human neuroblastoma cell line, confirmed the preferential association of CREB to the proximal region of the RIC8B promoter. By performing luciferase reporter assays, we found the CRE sites as the most relevant elements for its transcriptional activity. Taken together, these data show the existence of functional CREB and C/EBP binding sites in the human RIC8B gene promoter, a particular distribution of these sites and demonstrate a relevant role of CREB in stimulating transcriptional activity of this gene. J. Cell. Biochem. 117: 1797-1805, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/biosíntesis , Elementos de Respuesta , Transcripción Genética/fisiología , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Factores de Intercambio de Guanina Nucleótido/genética , Humanos
17.
Biochim Biophys Acta ; 1839(9): 764-72, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24972368

RESUMEN

The regulation of gene expression at the level of transcription involves the concerted action of several proteins and protein complexes committed to dynamically alter the surrounding chromatin environment of a gene being activated or repressed. ATP-dependent chromatin remodeling complexes are key factors in chromatin remodeling, and the SWI/SNF complex is the founding member. While many studies have linked the action of these complexes to specific transcriptional regulation of a large number of genes and much is known about their catalytic activity, less is known about the nuclear elements that can enhance or modulate their activity. A number of studies have found that certain High Mobility Group (HMG) proteins are able to stimulate ATP-dependent chromatin remodeling activity, but their influence on the different biochemical outcomes of this activity is still unknown. In this work we studied the influence of the yeast Nhp6A, Nhp6B and Hmo1 proteins (HMGB family members) on different biochemical outcomes of yeast SWI/SNF remodeling activity. We found that all these HMG proteins stimulate the sliding activity of ySWI/SNF, while transient exposure of nucleosomal DNA and octamer transfer catalyzed by this complex are only stimulated by Hmo1. Consistently, only Hmo1 stimulates SWI/SNF binding to the nucleosome. Additionally, the sliding activity of another chromatin remodeling complex, ISW1a, is only stimulated by Hmo1. Further analyses show that these differential stimulatory effects of Hmo1 are dependent on the presence of its C-terminal tail, which contains a stretch of acidic and basic residues.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/fisiología , Proteínas Fúngicas/fisiología , Proteínas HMGB/fisiología , Nucleosomas/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas HMGN/fisiología , Proteínas del Grupo de Alta Movilidad/fisiología , Unión Proteica , Proteínas de Saccharomyces cerevisiae/fisiología
18.
PLoS One ; 8(9): e73817, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24040083

RESUMEN

SALL2- a member of the Spalt gene family- is a poorly characterized transcription factor found deregulated in various cancers, which suggests it plays a role in the disease. We previously identified SALL2 as a novel interacting protein of neurotrophin receptors and showed that it plays a role in neuronal function, which does not necessarily explain why or how SALL2 is deregulated in cancer. Previous evidences indicate that SALL2 gene is regulated by the WT1 and AP4 transcription factors. Here, we identified SALL2 as a novel downstream target of the p53 tumor suppressor protein. Bioinformatic analysis of the SALL2 gene revealed several putative p53 half sites along the promoter region. Either overexpression of wild-type p53 or induction of the endogenous p53 by the genotoxic agent doxorubicin repressed SALL2 promoter activity in various cell lines. However R175H, R249S, and R248W p53 mutants, frequently found in the tumors of cancer patients, were unable to repress SALL2 promoter activity, suggesting that p53 specific binding to DNA is important for the regulation of SALL2. Electrophoretic mobility shift assay demonstrated binding of p53 to one of the identified p53 half sites in the Sall2 promoter, and chromatin immunoprecipitation analysis confirmed in vivo interaction of p53 with the promoter region of Sall2 containing this half site. Importantly, by using a p53ER (TAM) knockin model expressing a variant of p53 that is completely dependent on 4-hydroxy-tamoxifen for its activity, we show that p53 activation diminished SALL2 RNA and protein levels during genotoxic cellular stress in primary mouse embryo fibroblasts (MEFs) and radiosensitive tissues in vivo. Thus, our finding indicates that p53 represses SALL2 expression in a context-specific manner, adding knowledge to the understanding of SALL2 gene regulation, and to a potential mechanism for its deregulation in cancer.


Asunto(s)
Daño del ADN , Regulación de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína p53 Supresora de Tumor/genética , Animales , Antibióticos Antineoplásicos/farmacología , Secuencia de Bases , Sitios de Unión/genética , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Proteínas de Unión al ADN , Doxorrubicina/farmacología , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células HCT116 , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas/genética , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico , Factores de Transcripción , Proteína p53 Supresora de Tumor/metabolismo
19.
Soc Sci Med ; 74(5): 775-82, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22296949

RESUMEN

Several studies have reported increased mortality during holidays. Using a cultural epidemiological, sequential mixed-methods approach, this study explored holiday-related trends using mortality data from Yautepec (Morelos, Mexico) collected between 1986 and 2008 (N=5027 deaths). This analysis found that mortality increased on Christmas Day and All Saints' Day. Mortality increased on Candlemas Day among women, and increased on New Year's Day among men. More deaths caused by cardiovascular disease among women and traumatic injuries among men occurred during holidays than in non-holiday periods. To ascertain the elements comprising the health/illness/death process in the context of a holiday in this municipality, we conducted semi-structured interviews in March and April 2009 with relatives of seven individuals who had died during holidays in the previous 4 years (N=11); data from these interviews were analyzed from a grounded theory perspective to ascertain common conceptual themes. The "beautiful death" emerged as the main concept in the interpretation of death; this concept was related to the expectation of a good death and the particularly special nature of death during a holiday because of the involvement of religious entities, such as God, the Virgin Mary, and/or a saint, at the moment of death. Quantitative and qualitative results provided information about the important effects of holidays, culture, and religious belief on mortality patterns within a Mexican context, and contributed to a better understanding of the relationships among mortality, the nature of death, and holidays. Our results suggest that, in the studied region, death can be interpreted as a "beautiful process". More research is needed to explore this process in other similar contexts and to address topics related to the care and attention given the dying person and the expectation of a good death.


Asunto(s)
Actitud Frente a la Muerte , Vacaciones y Feriados , Mortalidad/tendencias , Antropología Cultural , Causas de Muerte , Femenino , Humanos , Entrevistas como Asunto , Masculino , México/epidemiología , Persona de Mediana Edad , Factores Sexuales
20.
Biochem Cell Biol ; 85(4): 419-25, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17713577

RESUMEN

Chromatin organization within the nuclear compartment is a fundamental mechanism to regulate the expression of eukaryotic genes. During the last decade, a number of nuclear protein complexes with the ability to remodel chromatin and regulate gene transcription have been reported. Among these complexes is the SWI/SNF family, which alters chromatin structure in an ATP-dependent manner. A considerable effort has been made to understand the molecular mechanisms by which SWI/SNF catalyzes nucleosome remodeling. However, limited attention has been dedicated to studying the role of the DNA sequence in this remodeling process. Therefore, in this minireview, we discuss the contribution of nucleosome positioning and nucleosome excluding sequences to the targeting and activity of SWI/SNF complexes. This discussion includes results from our group using the rat osteocalcin gene promoter as a model. Based on these results, we postulate a model for chromatin remodeling and transcriptional activation of this gene in osteoblastic cells.


Asunto(s)
Secuencia de Bases , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , ADN , Nucleosomas , Factores de Transcripción/metabolismo , Animales , ADN/genética , ADN/metabolismo , Modelos Genéticos , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Osteocalcina/genética , Regiones Promotoras Genéticas , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA