Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mov Ecol ; 11(1): 55, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658459

RESUMEN

BACKGROUND: Long-distance migratory birds spend most of their annual cycle in non-breeding areas. During this period birds must meet their daily nutritional needs and acquire additional energy intake to deal with future events of the annual cycle. Therefore, patterns of space use and movement may emerge as an efficient strategy to maintain a trade-off between acquisition and conservation of energy during the non-breeding season. However, there is still a paucity of research addressing this issue, especially in trans-hemispheric migratory birds. METHODS: Using GPS-tracking data and a recently developed continuous-time stochastic process modeling framework, we analyzed fine-scale movements in a non-breeding population of Hudsonian godwits (Limosa haemastica), a gregarious long-distance migratory shorebird. Specifically, we evaluated if these extreme migrants exhibit restricted, shared, and periodic patterns of space use on one of their main non-breeding grounds in southern South America. Finally, via a generalized additive model, we tested if the observed patterns were consistent within a circadian cycle. RESULTS: Overall, godwits showed finely-tuned range-residence and periodic movements (each 24-72 h), being similar between day and night. Remarkably, range-resident individuals segregated spatially into three groups. In contrast, a smaller fraction of godwits displayed unpredictable and irregular movements, adding functional connectivity within the population. CONCLUSIONS: In coastal non-breeding areas where resource availability is highly predictable due to tidal cycles, range-resident strategies during both the day and night are the common pattern in a long-distance shorebird population. Alternative patterns exhibited by a fraction of non-resident godwits provide functional connectivity and suggest that the exploratory tendency may be essential for information acquisition and associated with individual traits. The methodological approach we have used contributes to elucidate how the composition of movement phases operates during the non-breeding season in migratory species and can be replicated in non-migratory species as well. Finally, our results highlight the importance of considering movement as a continuum within the annual cycle.

2.
Sci Rep ; 9(1): 17616, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772390

RESUMEN

The high metabolic activity associated with endurance flights and intense fuelling of migrant birds may produce large quantities of reactive oxygen species, which cause oxidative damage. Yet it remains unknown how long-lived birds prepare for oxidative challenges prior to extreme flights. We combined blood measurements of oxidative status and enzyme and fat metabolism in Hudsonian godwits (Limosa haemastica, a long-lived shorebird) before they embarked on non-stop flights longer than 10,000 km during their northbound migrations. We found that godwits increased total antioxidant capacity (TAC) and reduced oxidative damage (TBARS) as the pre-migratory season progressed, despite higher basal metabolic rates before departure. Elevations in plasma ß-hydroxybutyrate and uric acid suggest that lipid and protein breakdown supports energetic requirements prior to migration. Significant associations between blood mitochondrial cytochrome-c oxidase and plasma TAC (negative) and TBARS (positive) during winter indicate that greater enzyme activity can result in greater oxidative damage and antioxidant responses. However enzyme activity remained unchanged between winter and premigratory stages, so birds may be unable to adjust metabolic enzyme activity in anticipation of future demands. These results indicate that godwits enhance their oxidative status during migratory preparation, which might represent an adaptation to diminish the physiological costs of long-distance migration.


Asunto(s)
Migración Animal/fisiología , Charadriiformes/metabolismo , Vuelo Animal/fisiología , Estrés Oxidativo , Ácido 3-Hidroxibutírico/sangre , Adiposidad , Animales , Antioxidantes/análisis , Metabolismo Basal , Citrato (si)-Sintasa/sangre , Complejo IV de Transporte de Electrones/sangre , Metabolismo Energético , Eritrocitos/química , Femenino , Peroxidación de Lípido , Longevidad , Masculino , Estaciones del Año , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Triglicéridos/sangre , Ácido Úrico/sangre
3.
PLoS One ; 14(3): e0212441, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30865657

RESUMEN

Human presence at intertidal areas could impact coastal biodiversity, including migratory waterbird species and the ecosystem services they provide. Assessing this impact is therefore essential to develop management measures compatible with migratory processes and associated biodiversity. Here, we assess the effects of human presence on the foraging opportunities of Hudsonian godwits (Limosa haemastica, a trans-hemispheric migratory shorebird) during their non-breeding season on Chiloé Island, southern Chile. We compared bird density and time spent foraging in two similar bays with contrasting disturbance levels: human presence (mostly seaweed harvesters accompanied by dogs) was on average 0.9±0.4 people per 10 ha in the disturbed bay, whereas it was negligible (95% days absent) in the non-disturbed bay. Although overall abundances were similar between bays, godwit density was higher in the non-disturbed bay throughout the low tide period. Both days after the start of the non-breeding season and tidal height significantly affected godwit density, with different effects in either bay. Time spent foraging was significantly higher in the non-disturbed bay (86.5±1.1%) than in the disturbed one (81.3±1.4%). As expected, godwit density significantly decreased with the number of people and accompanying dogs in the disturbed bay. Our results indicate that even a low density of people and dogs can significantly reduce the foraging opportunities of shorebirds. These constraints, coupled with additional flushing costs, may negatively affect godwits' pre-migratory fattening. Hence, as a first step we suggest limiting human presence within bays on Chiloé to 1 person per 10 ha and banning the presence of accompanying dogs in sensitive conservation areas.


Asunto(s)
Migración Animal , Biodiversidad , Charadriiformes/fisiología , Conservación de los Recursos Naturales , Animales , Bahías , Perros , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA