RESUMEN
Modifiers of Mendelian disorders can provide insights into disease mechanisms and guide therapeutic strategies. A recent genome-wide association (GWA) study discovered genetic modifiers of Huntington's disease (HD) onset in Europeans. Here, we performed whole genome sequencing and GWA analysis of a Venezuelan HD cluster whose families were crucial for the original mapping of the HD gene defect. The Venezuelan HD subjects develop motor symptoms earlier than their European counterparts, implying the potential for population-specific modifiers. The main Venezuelan HD family inherits HTT haplotype hap.03, which differs subtly at the sequence level from European HD hap.03, suggesting a different ancestral origin but not explaining the earlier age at onset in these Venezuelans. GWA analysis of the Venezuelan HD cluster suggests both population-specific and population-shared genetic modifiers. Genome-wide significant signals at 7p21.2-21.1 and suggestive association signals at 4p14 and 17q21.2 are evident only in Venezuelan HD, but genome-wide significant association signals at the established European chromosome 15 modifier locus are improved when Venezuelan HD data are included in the meta-analysis. Venezuelan-specific association signals on chromosome 7 center on SOSTDC1, which encodes a bone morphogenetic protein antagonist. The corresponding SNPs are associated with reduced expression of SOSTDC1 in non-Venezuelan tissue samples, suggesting that interaction of reduced SOSTDC1 expression with a population-specific genetic or environmental factor may be responsible for modification of HD onset in Venezuela. Detection of population-specific modification in Venezuelan HD supports the value of distinct disease populations in revealing novel aspects of a disease and population-relevant therapeutic strategies.
Asunto(s)
Genes Modificadores/genética , Estudio de Asociación del Genoma Completo/métodos , Enfermedad de Huntington/genética , Secuenciación Completa del Genoma/métodos , Proteínas Adaptadoras Transductoras de Señales , Edad de Inicio , Salud de la Familia , Femenino , Interacción Gen-Ambiente , Genética de Población , Haplotipos , Humanos , Proteína Huntingtina/genética , Péptidos y Proteínas de Señalización Intracelular , Masculino , Polimorfismo de Nucleótido Simple , Proteínas/genética , VenezuelaRESUMEN
Tumoral tissues tend to generally exhibit aberrations in DNA copy number that are associated with the development and progression of cancer. Genotyping methods such as array-based comparative genomic hybridization (aCGH) provide means to identify copy number variation across the entire genome. To address some of the shortfalls of existing methods of DNA copy number data analysis, including strong model assumptions, lack of accounting for sampling variability of estimators, and the assumption that clones are independent, we propose a simple graphical approach to assess population-level genetic alterations over the entire genome based on moving average. Furthermore, existing methods primarily focus on segmentation and do not examine the association of covariates with genetic instability. In our methods, covariates are incorporated through a possibly mis-specified working model and sampling variabilities of estimators are approximated using a resampling method that is based on perturbing observed processes. Our proposal, which is applicable to partial, entire or multiple chromosomes, is illustrated through application to aCGH studies of two brain tumor types, meningioma and glioma.
RESUMEN
Age of onset for Huntington's disease (HD) varies inversely with the length of the disease-causing CAG repeat expansion in the HD gene. A simple exponential regression model yielded adjusted R-squared values of 0.728 in a large set of Venezuelan kindreds and 0.642 in a North American, European, and Australian sample (the HD MAPS cohort). We present evidence that a two-segment exponential regression curve provides a significantly better fit than the simple exponential regression. A plot of natural log-transformed age of onset against CAG repeat length reveals this segmental relationship. This two-segment exponential regression on age of onset data increases the adjusted R-squared values by 0.012 in the Venezuelan kindreds and by 0.035 in the HD MAPS cohort. Although the amount of additional variance explained by the segmental regression approach is modest, the two slopes of the two-segment regression are significantly different from each other in both the Venezuelan kindreds [F(2, 439) = 11.13, P= 2 x 10(-5)] and in the HD MAPS cohort [F(2, 688) = 38.27, P= 2 x 10(-16)]. In both populations, the influence of each CAG repeat on age of onset appears to be stronger in the adult-onset range of CAG repeats than in the juvenile-onset range.
Asunto(s)
Enfermedad de Huntington/genética , Repeticiones de Trinucleótidos , Adulto , Edad de Inicio , Australia , Niño , Estudios de Cohortes , Europa (Continente) , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Genéticos , América del Norte , Expansión de Repetición de Trinucleótido , VenezuelaRESUMEN
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a triplet (CAG) expansion mutation. The length of the triplet repeat is the most important factor in determining age of onset of HD, although substantial variability remains after controlling for repeat length. The Venezuelan HD kindreds encompass 18,149 individuals spanning 10 generations, 15,409 of whom are living. Of the 4,384 immortalized lymphocyte lines collected, 3,989 DNAs were genotyped for their HD alleles, representing a subset of the population at greatest genetic risk. There are 938 heterozygotes, 80 people with variably penetrant alleles, and 18 homozygotes. Analysis of the 83 kindreds that comprise the Venezuelan HD kindreds demonstrates that residual variability in age of onset has both genetic and environmental components. We created a residual age of onset phenotype from a regression analysis of the log of age of onset on repeat length. Familial correlations (correlation +/- SE) were estimated for sibling (0.40 +/- 0.09), parent-offspring (0.10 +/- 0.11), avuncular (0.07 +/- 0.11), and cousin (0.15 +/- 0.10) pairs, suggesting a familial origin for the residual variance in onset. By using a variance-components approach with all available familial relationships, the additive genetic heritability of this residual age of onset trait is 38%. A model, including shared sibling environmental effects, estimated the components of additive genetic (0.37), shared environment (0.22), and nonshared environment (0.41) variances, confirming that approximately 40% of the variance remaining in onset age is attributable to genes other than the HD gene and 60% is environmental.